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Summary

Having insights from Institute for Health Metrics and Evaluation (IHME) analysis
which shows that progress in reducing zero-dose children which stalled in a number of
regions in Ethiopia post-2010, the study is intended to quantify the relative contribu-
tion of the three drivers (intent to vaccine, community access and facility readiness)
of vaccine coverage in Ethiopia. In collaboration with IHME, data analytic and visu-
alization unit at National Data Management Center for Health (NDMC) at Ethiopian
public health institute (EPHI) in collaboration with IHME systematically compiled
and analyzed data from different sources to produce harmonized geospatial estimates
of the three drivers, linked the estimates of the three drivers to available household
surveys and estimated the predicted relationship between the probability that a child
is vaccinated and levels of the three drivers using Machine Learning (ML) methods.
This manual presents the data pre-processing approach as well as steps for fitting ML
model for quantifying the relative contributions of the three domains on the likelihood
of vaccination. The analysis was carried out using R statistical software. Thus, this
document presents the R code used together with the results of the analysis
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Chapter 1

Introduction

In this analysis, the drivers of improvements in childhood vaccination were quanti-
fied. The analysis was done following three-step analytical approach. The first step
is to assemble individual-level dataset with linked variables on vaccination drivers
across a range of data sources (surveys, administrative data and routine systems).
We then model the relationship between drivers and likelihood of vaccination cov-
erage to understand which drivers have the biggest impact on vaccination. Finally,
we decompose the relationship of drivers on vaccination coverage over time to un-
derstand which drivers were associated with the greatest change.

Figure 1.1: Conceptual Frame Work

As a general approach, the existing survey and administrative data over time were
linked first, followed by construction of child-level cohort with estimates of intent
(caregiver perceptions), access (travel time to closest facility with RI), and readi-
ness (World Health Organizations (WHO)-SARA based index of vaccine service
delivery). Tree-based ML methods were utilized to model interacting-nonlinear re-
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lationship between domains, SHapley additive ExPlanations (SHAP) to decompose
modeled contributions to likelihood of coverage [1].

In this manual, the overall procedures for data cleaning, manipulation and mod-
eling were presented. The second chapter presents data pre-processing and data
manipulation steps for all sources of data including SARA, Cold chain equipment
inventory (CCEI). The third chapter presents steps of computing the three domains
(readiness, intent, access) and the fourth chapter presents implementation of ML
models for the cleaned data. All analysis were carried out using R software, thus
the codes presented can directly be implemented using R software [2].
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Chapter 2

Data Pre-Processing

2.1 Pre-processing 2018 Service Availability and
Readiness Assessment (SARA) Data

SARA is a data set collected by. In this analysis, SARA data set is used to extract
information on the readiness domain. We used WHO indicators for readiness of fa-
cilities for providing vaccines to children. The following sections describes the steps
carried out to pre-process SARA 2018 dataset with objective of making the data
ready for computing facility readiness indicators from it.

We started with loading the necessary packages or libraries used for data manipu-
lation in R. The following code is used to do so.

libs <- c('tidyverse', 'RColorBrewer', 'ggplot2', 'reshape', 'knitr',
'data.table', 'geepack', 'mlmRev', 'lme4', 'xtable', 'readstata13',
'MASS', 'lubridate', 'varhandle', 'readxl')

for(l in libs){
if(!require(l,character.only = TRUE, quietly = TRUE))
{message( sprintf('Did not have the required package

  << %s >> installed. Downloading now ... ',l))
install.packages(l)

}
library(l, character.only = TRUE, quietly = TRUE)

}

The above code will check if the listed libraries are available in our computer, load
(if available) and install and load (if missing!).

In other words, the code will install tidyverse, RColorBrewer, ggplot2, reshape,
knitr, data.table, geepack, mlmRev, lme4, xtable, readstata13, MASS, lubridate,
varhandle and readxl. The code first creates a vector of package names called libs.
Then, it loops through the vector and checks if each package is installed. If the
package is not installed, the code will print a message and then install the package.
Finally, the code loads each package into the R environment.

After installing the necessary package and loading them in to the R environment,
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we then set the working directory and clear our working environment using the
following code. Any convenient folder can be set as working directory.
#set working directory:
setwd('Desktop/facility_readiness/SARA2018')
#clear working space:
rm(list = ls())

This will help us to ease our work by assigning any variables of our interest and save
it to our working environment. After cleaning our working environment, we proceed
with uploading the SARA 2018 survey in csv format. Note that we first need to set
working directory and locate our data set in that folder for easy work.
# Load the dataset
sara_2018<-read.csv('All SARA 2018.csv')
#Convert all variables to lowercase for easier coding
names(sara_2018) <- tolower(names(sara_2018))

The following code first creates a new variable called iso3 and assigns it the value
”ETH” for Ethiopia, the country where the SARA 2018 survey was conducted. The
code then renames the following variables (adopted from SARA 2018 questionnaire):

• q001: fac_id

• q003: fac_name

• weight: fac_weight

• q005: admin1

• q005name: admin1_name

• q006: admin2

• q006_name : admin2_name

• q007: fac_type

• qmonth: svy_month

• qday: svy_day

• qyear: svy_year

sara_2018 <- sara_2018 %>%
#Renaming subset of variables
mutate(iso3="ETH",

svy="SARA 2018",
fac_id=q001,
fac_name=str_to_title(q003),
fac_weight=weight, #all blank
admin1=q005,
admin1_name=str_to_title(q005_name),
admin2=q006,
admin2_name=str_to_title(q006_name),
fac_type=str_to_title(q007),
svy_month=qmonth,
svy_day=qday,
svy_year=qyear)
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In the above code, the str_to_title() function is used to capitalize the first let-
ter of each word in a string. This is done for the fac_name, admin1_name, and
admin2_name variables to make the names more readable.

The fallowing code first renames the q009 variable in SARA 2018 data set (see
appendix) to urban and changes the values to 0 for rural and 1 for urban.

The code then standardizes the following variables:

• result=as.numeric(factor(result)) converts the result variable from a factor to
a numeric vector. A factor is a categorical variable that can have a limited
number of values. The levels of the factor are converted to integers, and the
order of the levels is preserved

• svy_complete : This variable reflects whether the survey was completed or
not. The values 2, 3, and 4 are all codes for non-completion, so they are
converted to 0. The value 1 is the code for completion, so it is left unchanged.

• q5001b: This variable contains the reason for non-completion. The text is
trimmed to remove leading and trailing spaces.

• comments_aboutrespondent: This variable contains comments about the re-
spondent. The text is trimmed to remove leading and trailing spaces.

• any_other_comments: This variable contains any other comments. The text
is trimmed to remove leading and trailing spaces.

• operational: This variable indicates whether the facility is operational. The
values 2 and 3 are codes for non-operational, so they are converted to 0. The
value 1 is the code for operational, so it is left unchanged.

• fac_comments1: This variable contains comments about specific questions.
The text is trimmed to remove leading and trailing spaces and converted to
lowercase.

• fac_comments2: This variable contains any other comments. The text is
trimmed to remove leading and trailing spaces and converted to lowercase. The
above code also creates a new variable for the survey year, which is calculated
from the svydate variable.

sara_2018 %>%
mutate(urban=ifelse(q009==2,0,q009),

#Facility weights are all 0 for svy_complete==0
result=as.numeric(factor(result)),
svy_complete=ifelse(q5001a==2 | q5001a==3 | q5001a==4,0,NA),
svy_complete=ifelse(q5001a==1, 1, svy_complete),
q5001b==str_trim(q5001b), comments_about_respondent=
str_trim(comments_about_respondent),
any_other_comments=str_trim(any_other_comments),
operational=ifelse(svy_complete==1,1,NA),
operational=ifelse(q5001a==4,0,operational),

fac_comments1=str_trim(tolower(comments_on_specific_questions)),
fac_comments2=str_trim(tolower(any_other_comments))
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Facility ownership

The facility ownership variable in the sara 2018 dataset is coded as follows. in SARA
2018. the fac_own variable is a categorical variable that indicates the ownership of
the facility with possible values of government/public, NGO/Not-for-profit, private-
for-profit and mission/faith-based.

• The code first checks if the value of q008 is 1. If it is, the fac_own variable
is assigned the value ”Government/public”.

• The code then checks if the value of q008 is 2. If it is, the fac_own variable
is assigned the value ”NGO/not-for-profit”.

• The code then checks if the value of q008 is 96 and the value of q008_a is
”suger factory”. If it is, the fac_own variable is assigned the value ”Govern-
ment/public”. This is because the Matahara General Hospital, which is owned
by the government, is coded as 96 in the q008 variable.

• The code then checks if the value of q008 is 96 and the value of q008_a is
”company employees cl”. If it is, the fac_own variable is assigned the value
”Private-for-profit”. This is because the Sheble Transport Lower Clinic, which
is owned by a private company, is coded as 96 in the q008 variable.

• The code then checks if the value of q008 is 96 and the value of q008_a is
”INSTITUTIONAL CLINI”. If it is, the fac_own variable is assigned the
value ”Private-for-profit”. This is because the Awash Emenebered Medium
Clinic, which is owned by a private company, is coded as 96 in the q008
variable.

• The code then checks if the value of q008 is 3. If it is, the fac_own variable
is assigned the value ”Private-for-profit”.

• Lastly, the code then checks if the value of q007 is 4. If it is, the fac_own
variable is assigned the value ”Mission/faith-based”.

sara_2018 %>% mutate(
fac_own=ifelse(q008==1, "Government/public", ""),
fac_own=ifelse(q008==2, "NGO/Not-for-profit", fac_own),

fac_own=ifelse((q008==96&q008_a=='suger
        factory'),"Government/public", fac_own),

fac_own=ifelse((q008==96&q008_a=='company employees
        cl'),"Private-for-profit", fac_own),

fac_own=ifelse((q008==96&q008_a=='INSTITUITIONAL
        CLINI'),"Private-for-profit", fac_own),

fac_own=ifelse(q008==3, "Private-for-profit", fac_own),
fac_own=ifelse(q007==4, "Mission/faith-based", fac_own))

Facility type
The following code is used to re-code the facility type variable in the SARA 2018
dataset. The fac_type variable is a categorical variable that indicates the type of
facility with possible values of referral hospital, general hospital, primary hospital,
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health centre, health post, higher clinic, medium clinic, lower clinic and MCH spe-
cialized center.

• The code first checks if the value of fac_type is 1. If it is, the fac_type
variable is assigned the value ”Referral hospital”.

• The code then checks if the value of fac_type is 2. If it is, the fac_type
variable is assigned the value ”General hospital”.

• The code then checks if the value of fac_type is 3. If it is, the fac_type
variable is assigned the value ”Primary hospital”.

• The code then checks if the value of fac_type is 4. If it is, the fac_type
variable is assigned the value ”Health centre”.

• The code then checks if the value of fac_type is 5. If it is, the fac_type
variable is assigned the value ”Health post”.

• The code then checks if the value of fac_type is 6. If it is, the fac_type
variable is assigned the value ”Higher clinic”.

• The code then checks if the value of fac_type is 7. If it is, the fac_type
variable is assigned the value ”Medium clinic”.

• The code then checks if the value of fac_type is 8. If it is, the fac_type
variable is assigned the value ”Lower clinic”.

• The code then checks if the value of fac_type is 9. If it is, the fac_type
variable is assigned the value ”MCH specialized center”.
sara_2018 %>% mutate(

fac_type=ifelse(fac_type=="1","Referral hospital", fac_type),
fac_type=ifelse(fac_type=="2","General hospital", fac_type),
fac_type=ifelse(fac_type=="3","Primary hospital", fac_type),
fac_type=ifelse(fac_type=="4","Health centre", fac_type),
fac_type=ifelse(fac_type=="5","Health post", fac_type),
fac_type=ifelse(fac_type=="6","Higher clinic", fac_type),
fac_type=ifelse(fac_type=="7","Medium clinic", fac_type),
fac_type=ifelse(fac_type=="8","Lower clinic", fac_type),
fac_type=ifelse(fac_type=="9","MCH specialized center", fac_type)

In SARA 2018 data set, the variables q013_b, q013_c, and q013_dvariables contain
the degrees, minutes, and seconds of the latitude, respectively. The q014_b, q014_c,
and q014_d variables contain the degrees, minutes, and seconds of the longitude,
respectively. The code you provided is to convert the GPS coordinates from degrees,
minutes, and seconds to decimal degrees.

The code first creates two new variables, latnum and longnum. The latnum variable
is assigned the value of q013_b plus the value of q013_c divided by 60 plus the value
of q013_d divided by 3600. The longnum variable is assigned the value of q014_b
plus the value of q014_c divided by 60 plus the value of q014_d divided by 3600.

sara_2018 %>% mutate(
latnum=q013_b + ((q013_c/60)+(q013_d/3600)),
longnum=q014_b +((q014_c/60)+(q014_d/3600)))
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Service availability and stocking

The following code is used to re-code routine immunization (RI) service availability
and stocking in the SARA 2018 dataset. The ri_services variable indicates whether
the facility provides RI services. The ri_services_today variable indicates whether
the facility provides RI services at the time of data collection

The code first creates two new variables, ri_services and ri_services_today vari-
ables. The ri_services variable is assigned the value of 0 if the value of q1100 is
2, which indicates that the facility does not provide RI services. The ri_services
variable is assigned the value of 1 if the value of q1100 is 1, which indicates that the
facility does provide RI services.

The ri_services_today variable is assigned the value of 0 if the value of q1101 is 2,
which indicates that the facility does not provide routine immunization services at
the time of data collection. The ri_services_today variable is assigned the value
of 1 if the value of q1101 is 1, which indicates that the facility does provide routine
immunization services at the time of data collection.

sara_2018 %>% mutate(
ri_services=ifelse(q1100==2,0,NA),
ri_services=ifelse(q1100==1,1,ri_services),
ri_services_today=ifelse(q1101==2,0,NA),
ri_services_today=ifelse(q1101==1,1,ri_services_today))

Guideline availability is re-coded using nat_child_ri_guidelines and
any_child_ri_guidelines variables. The nat_child_ri_guidelines variable indi-
cates whether the facility has national child RI guidelines. The any_child_ri_guidelines
variable indicates whether the facility has any child RI guidelines.

• The code first creates two new variables,
nat_child_ri_guidelines and any_child_ri_guidelines.
The nat_child_ri_guidelines variable is assigned the value of 0 if the value
of q1105 is 2 or 3, which indicates that the facility does not have national child
RI guidelines or that the guidelines are not seen while it is assigned the value
of 1 if the value of q1105 is 1, which indicates that the facility has national
child RI guidelines.

• The any_child_ri_guidelines variable is assigned the value of the nat_child_ri_guidelines
variable. This is because the any_child_ri_guidelines variable is a more
general measure of whether the facility has any child RI guidelines, including
national guidelines.

Note that SARA 2018 does not ask about vaccine-specific frequency of services. The
code then trims the whitespace from the q1103_a and q1104_a variables using the
str_trim() function which removes leading and trailing whitespace from character
strings.

sara_2018 %>% mutate(
#Guideline availability:
#reported not seen + no guidelines recoded as No
nat_child_ri_guidelines=ifelse(q1105==2 | q1105==3,0,NA),
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nat_child_ri_guidelines=ifelse(q1105==1,1,nat_child_ri_guidelines),
any_child_ri_guidelines=nat_child_ri_guidelines ,
q1103_a=str_trim(as.character(q1103_a)),
q1104_a=str_trim(as.character(q1104_a)))

Facility-based services

The following code is used to capture the frequency of facility-based immuniza-
tion services in the SARA 2018 dataset. The f_freq_daily, fac_freq_weekly,
fac_freq_monthly, and fac_freq_quarterly variables indicate whether the fa-
cility provides immunization services daily, weekly, monthly, or quarterly, respec-
tively. The fac_freq_any variable indicates whether the facility provides any
facility-based immunization services. The code first creates a new variable called
f_freq_daily and assigns the value of 1 if the value of q1103 is 1, which indicates
that the facility provides immunization services daily. The code then creates a new
variable called fac_freq_weekly and assigns the value of 1 if the value of q1103 is
2, which indicates that the facility provides immunization services weekly.

The code then checks if the value of q1103_a is one of the following strings: ”two
days per weak”, ”2 days per weak”, ”3 days per weak”, ”twice per week”, ”per week
two times”, ”2 times aweek”, ” twice aweek”, ”twice a week”, ”every other day”,
”2TIMES PER WEEK” OR ”2times per week”. If the value of q1103_a is one of
these strings, the code assigns the value of 1 to the fac_freq_weekly variable. This
is because these strings all indicate that the facility provides immunization services
weekly. The code then creates a new variable called fac_freq_monthly and assigns
the value of 1 if the value of q1103 is 3, which indicates that the facility provides
immunization services monthly.

The code then checks if the value of q1103_a is one of the following strings: ”every
15 days”, ”every two weeks” OR ”Three Times monthly”. If the value of q1103_a
is one of these strings, the code assigns the value of 1 to the fac_freqmonthly
variable. This is because these strings all indicate that the facility provides immu-
nization services at least monthly.

The code then creates a new variable called fac_freq_quarterly and assigns the
value of 1 if the value of q1103 is 4, which indicates that the facility provides immu-
nization services quarterly. The code then creates a new variable called fac_freq_any
and assigns the value of 1 if any of f_freq_daily, fac_freq_weekly, fac_freq_monthly,
and fac_freq_quarterly variables are equal to 1. This is because this variable in-
dicates whether the facility provides any facility-based immunization services.

The code then checks if the value of ri_services is 0, which indicates that the facility
does not provide RI services. If the value of ri_services is 0, the code assigns the
value of 0 to the fac_freq_any variable. This is because a facility that does not
provideRI services cannot provide facility-based immunization services.

sara_2018 %>% mutate(
#Facility -based services
fac_freq_daily=ifelse(q1103==1,1,NA),
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fac_freq_weekly=ifelse(q1103==2,1,NA),
#Recode 2x per week as weekly
fac_freq_weekly=ifelse(q1103_a=="two days per weak" |
q1103_a=="2 days per weak" | q1103_a=="3 days per weak" |

q1103_a=="twice per week" |
q1103_a=="per week two times" |
q1103_a=="2 times aweek" |
q1103_a==" twice aweek" |
q1103_a=="twice a week"|
q1103_a=="every other day"|
q1103_a=="2TIMES PER

                                 WEEK"|q1103_a=="2times per
                                 week",1,fac_freq_weekly),

fac_freq_monthly=ifelse(q1103==3,1,NA),
#Recode every 15 days and every two weeks as at least monthly
# recode 3x monthly as quarterly
fac_freq_monthly=ifelse(q1103_a=="every 15 days" |
q1103_a=="every two weeks"|q1103_a=="Three Times

        monthly",1,fac_freq_monthly),
fac_freq_quarterly=ifelse(q1103==4,1,NA),

# frequency of any immunization services (yes for all
daily, weekly, monthly or quarterly yeses)

#no if the facility is not providing RI services

fac_freq_any=ifelse(fac_freq_daily==1 | fac_freq_weekly==1 |
fac_freq_monthly==1 | fac_freq_quarterly==1,1,NA),
fac_freq_any=ifelse(ri_services==0,0,fac_freq_any),
#recode open ended questions
fac_freq_any=ifelse(q1103_a=="no facility services" |
q1103_a=="NO GIVE THE SITE" | q1103_a=="provides outreach only"
| q1103_a=="no infacilty vaccination" |

q1103_a=="doesn't give in the facil" |
q1103_a=="only outreach immunizaion" |
q1103_a=="NO GIVE ONSITE IMMUNIZATI" |
q1103_a=="provide at otreach only" |
q1103_a=="doesnt provide at

                              facilit",0,fac_freq_any))

Finally, the code checks if the value of q1103_a is one of the following strings: ”no
facility services”, ”NO GIVE THE SITE”, ”provides outreach only”, ”no infacilty
vaccination”, ”doesn’t give in the facil”, ”only outreach immunizaion”, ”NO GIVE
ONSITE IMMUNIZATI”, ”provide at otreach only”, ”doesnt provide at facilit”. If
the value of q1103_a is one of these strings, the code assigns the value of 0 to the
fac_freq_any variable. This is because these strings all indicate that the facility
does not provide any facility-based immunization services.

Outreach-based services
The following code is used to re-code outreach-based services variable in the SARA
2018 dataset:

• out_freq_daily: A binary variable indicating whether the respondent re-
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ported that RH services are provided on a daily basis (1) or not (0).

• out_freq_weekly: A binary variable indicating whether the respondent re-
ported that RH services are provided on a weekly basis (1) or not (0).

• out_freq_monthly: A binary variable indicating whether the respondent re-
ported that RH services are provided on a monthly basis (1) or not (0).

• out_freq_quarterly: A binary variable indicating whether the respondent
reported that RH services are provided on a quarterly basis (1) or not (0).

• out_freq_any: A binary variable indicating whether the respondent reported
that RH services are provided on a daily, weekly, monthly, or quarterly basis
(1) or not (0).

The code also takes into account the following factors when creating these variables:

• The value of the q1104 variable, which asks how often RI services are provided.

• The value of the q1104_a variable, which is an open-ended question asking
for more detail about the frequency of RI service provision.

• The value of the ri_services variable, which indicates whether the respon-
dent’s facility provides RI services.
sara_2018 %>% mutate(

#Outreach -based services

#Daily service provision -- q1104==1
out_freq_daily=ifelse(q1104==1,1,NA),

#Weekly service provision -- q1104==2
out_freq_weekly=ifelse(q1104==2,1,NA),
#Recode 2 or 3x per week as indicated in open-ended question as
weekly service provision
out_freq_weekly=ifelse(q1104_a=="2 days per weak" |
q1104_a=="2times per week", 1,out_freq_weekly),

#Monthly service provision -- q1104==3
out_freq_monthly=ifelse(q1104==3,1,NA),

#Recode every 2 weeks, every 15 days, 2-5 days per month as
indicated in open-ended question as monthly service provision
out_freq_monthly=ifelse(q1104_a=="every 15 days" |

q1104_a=="two day's per month" |
q1104_a=="2 times amonth" |
q1104_a=="3 times per

                                  month",1,out_freq_monthly),
#Quarterly service provision -- q1104==4
out_freq_quarterly=ifelse(q1104==4,1,NA),

#Any outreach -based service provision
### To follow-up: what about "campaigns only" and/or "when
#there's a campaign" -- should that count for "any [routine]
#outreach"?

out_freq_any=ifelse(out_freq_daily==1 | out_freq_weekly==1 |
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out_freq_monthly==1 | out_freq_quarterly==1,1,NA),
#Recode every 6 months as any outreach service provision - less
than quarterly
out_freq_any=ifelse(ri_services==0,0,out_freq_any),
#Recode open-ended question responses around no outreach-based services as 0
out_freq_any=ifelse(ri_services==1 & (q1104==96 &
(q1104_a=="no out each" | q1104_a=="No out reach" |
q1104_a=="NO OUT REACH" | q1104_a=="NO OUTREACH" |
q1104_a=="no outreach" | q1104_a=="n0 0ut reach" |
q1104_a=="n0 outreach" | q1104_a=="no outreache" |
q1104_a=="no outrech" | q1104_a=="no outreche" |
q1104_a=="NO outrich" | q1104_a=="no outrich" |
q1104_a=="not outreach t all" |
q1104_a=="their is no out reach"|
q1104_a=="NO out reach service" |
q1104_a=="no out  reach service"|
q1104_a=="No out reach service" |
q1104_a=="NO OUT REACH SERVICE" |
q1104_a=="No outreach service" |
q1104_a=="no outreach service" |
q1104_a=="no out reach serivce" |
q1104_a=="n0 outreach service" |
q1104_a=="no outreached service" |
q1104_a=="no outrich service" |
q1104_a=="no service at outreach"|
q1104_a=="no out reach services" |
q1104_a=="no outreach services" |
q1104_a=="no out reach servise" |
q1104_a=="no ut each serives" |
q1104_a=="no out each sevices" |
q1104_a=="no outreach ervise" |
q1104_a=="only in the facility" |
q1104_a=="Only in the facility" |
q1104_a=="in the facility only" |
q1104_a=="IN THE FACILITY ONLY" |
q1104_a=="In the facility only" |
q1104_a=="IN THE FACILITY ONLY" |
q1104_a=="facility only" |
q1104_a=="in facility only" |
q1104_a=="only in the faclity" |
q1104_a=="only at the facility" |
q1104_a=="only given inthe facility" |
q1104_a=="No out each program" |
q1104_a=="no out reach program" |
q1104_a=="no outreach pg" |
q1104_a=="no any outreach program"|
q1104_a=="no in outreach program" |
q1104_a=="NO OUTREACH PROGRAM" |
q1104_a=="no program to outreach" |
q1104_a=="NEVER GIVEN AS OUTREACH" |
q1104_a=="NO GIVE" |
q1104_a=="do not provide service" |
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q1104_a=="donot provides" |
q1104_a=="dont offer outreach servi" |
q1104_a=="dont provide outreach" |
q1104_a=="no give outreach" |
q1104_a=="no given out side" |
q1104_a=="no out reach given" |
q1104_a=="no outreach given" |
q1104_a=="no provide" |
q1104_a=="not give" |

q1104_a=="not given  outreach servic" |
q1104_a=="not provide"|
q1104_a=="not provided" |
q1104_a=="not prvided"|
q1104_a=="notoffered" |
q1104_a=='no outreach immunization'|
q1104_a=="no outreach vaccine" |
q1104_a=="not aut reach at all" |
q1104_a=="not Applicable" |
q1104_a=="not pplicable" |
q1104_a=="Not applicable" |
q1104_a=="nOT APPLICABLE" |
q1104_a=="NOT APPLICABLE" |
q1104_a=="N/A" | q1104_a=="N/a" |

q1104_a=="No" | q1104_a=="no" |
q1104_a=="not done" |
q1104_a=="not done outrech" |
q1104_a=="out reach not done" |
q1104_a=="outreach not done" ),0,out_freq_any))

Availability of vaccines in the stock: Penta
The availability of vaccines in the stock variable is re-coded using the following code.

• vxinstock_penta : A binary variable indicating whether pentavalent vaccine
is available in the stock (1) or not (0).

• nostockout3mths_penta: A binary variable indicating whether there was no
stock-out of pentavalent vaccine in the past 3 months (1) or yes stockout (0)
or not observed today (0).

• neveravail_penta: A binary variable indicating whether pentavalent vaccine
is never available (1) or not (0).

The code takes into account the following factors when creating these variables:

• The value of the q1116_02 variable, which asks about the availability of pen-
tavalent vaccine in the stock.

• The value of the q1117_02 variable, which asks about whether there was a
stock-out of pentavalent vaccine in the past 3 months.
sara_2018 %>% mutate(

#Availability of vaccines in the stock
#Pentavalent/DTP
#Code as 0 if available not but valid, reported but not seen, not
available today, never available
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vxinstock_penta=ifelse(q1116_02==2 |
q1116_02==3 | q1116_02==4 | q1116_02==5,0,NA),
vxinstock_penta=ifelse(q1116_02==1,1,vxinstock_penta),
#Observed at least one valid
#stock-out (pentavalent , 1=no stock-out, 0= yes stockout
OR not observed today)
nostockout3mths_penta=ifelse(q1117_02==1 |
q1116_02==4,0,NA), nostockout3mths_penta=
ifelse(q1117_02==2,1, nostockout3mths_penta),
nostockout3mths_penta=ifelse(is.na(vxinstock_penta),NA,
nostockout3mths_penta),
#Pentavalent not available if (product not offered OR never
available)
neveravail_penta=ifelse(q1117_02==4 | q1116_02==5,1,NA))

Availability of vaccines in the stock: BCG

For BCG, the following code is used to check its availability using the SARA 2018
dataset:

• vxinstock_bcg: This variable indicates whether BCG vaccine is in stock. A
value of 0 indicates that the vaccine is not in stock, and a value of 1 indicates
that it is in stock. The variable is coded as 0 if available but not valid, reported
but not seen, not available today and never available.

• nostockout3mths_bcg : This variable indicates whether there has been no
stockout of BCG vaccine in the past 3 months. A value of 0 indicates that
there has been a stockout, and a value of 1 indicates that there has not been
a stockout.

• neveravail_bcg : This variable indicates whether BCG vaccine has never been
available. A value of 1 indicates that the vaccine has never been available, and
a value of NA indicates that the information is not available.
sara_2018 %>% mutate(

#BCG
vxinstock_bcg=ifelse(q1116_04==2 | q1116_04==3 |
q1116_04==4 | q1116_04==5,0,NA),
vxinstock_bcg=ifelse(q1116_04==1,1,vxinstock_bcg),
#Observed at least one valid
nostockout3mths_bcg=ifelse(q1117_04==1 | q1116_04==4,0,NA),
nostockout3mths_bcg=ifelse(q1117_04==2,1, nostockout3mths_bcg),
nostockout3mths_bcg=ifelse(is.na(vxinstock_bcg),NA,
nostockout3mths_bcg), neveravail_bcg=ifelse(q1117_04==4 |
q1116_04==5,1,NA))

Availability of vaccines in the stock: Measles

The following code will will create new variables for measles containing vaccine
availability and stockout from SARA 2018 dataset:

• vxinstock_mcv: This variable indicates whether measles containing vaccine
is in stock. A value of 0 indicates that the vaccine is not in stock, and a value
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of 1 indicates that it is in stock. The variable is coded as 0 if available but
not valid, reported but not seen, not available today or never available (see
q1116_01 in SARA 2018 questionnaire).

• nostockout3mths_mcv : This variable indicates whether there has been no
stockout of measles containing vaccine in the past 3 months. A value of 0
indicates that there has been a stockout, and a value of 1 indicates that there
has not been a stockout.

• neveravail_mcv: This variable indicates whether measles containing vaccine
has never been available. A value of 1 indicates that the vaccine has never been
available, and a value of NA indicates that the information is not available.

sara_2018 %>% mutate(
#Measles containing vaccine
vxinstock_mcv=ifelse(q1116_01==2 | q1116_01==3 | q1116_01==4 |
q1116_01==5,0,NA),
vxinstock_mcv=ifelse(q1116_01==1,1,vxinstock_mcv),
#Observed at least one valid
nostockout3mths_mcv=ifelse(q1117_01==1 | q1116_01==4,0,NA),
nostockout3mths_mcv=ifelse(q1117_01==2,1, nostockout3mths_mcv),
nostockout3mths_mcv=ifelse(is.na(vxinstock_mcv),
NA,nostockout3mths_mcv),
neveravail_mcv=ifelse(q1117_01==4 | q1116_01==5,1,NA))

Availability of vaccines in the stock: Polio

The code below creates new variables for the availability of polio vaccines, OPV
and IPV. The vxinstock_opv variable indicate whether the vaccine is in stock
and is coded as 0 if available but not valid, reported but not seen, not avail-
able today and never available (see q1116_03 in SARA 2018 questionnaire). The
nostockout3mths_opv variables indicate whether there has been no stockout of
the vaccine in the past 3 months where as the variable neveravail_opv indicate
whether the vaccine has never been available. In addition, the vxinstock_ipv and
nostockout3mths_ipv variables were set to NA because IPV vaccine is not included
in the SARA 2018 dataset.

sara_2018 %>% mutate(
#Polio - OPV
vxinstock_opv=ifelse(q1116_03==2 | q1116_03==3 | q1116_03==4 |
q1116_03==5,0,NA),
vxinstock_opv=ifelse(q1116_03==1,1,vxinstock_opv),
#Observed at least one valid
nostockout3mths_opv=ifelse(q1117_03==1 | q1116_03==4,0,NA),
nostockout3mths_opv=ifelse(q1117_03==2,1, nostockout3mths_opv),
nostockout3mths_opv=ifelse(is.na(vxinstock_opv),NA,
nostockout3mths_opv),
neveravail_opv=ifelse(q1117_03==4 | q1116_03==5,1,NA),
#Polio - IPV (not inclucded in SARA 2018)
vxinstock_ipv=NA, nostockout3mths_ipv=NA,
neveravail_ipv=NA)
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Availability of vaccines in the stock: PCV

The following code will create the new variables for the availability of pneumococcal
conjugate vaccine (PCV). The vxinstock_pcv variable indicate whether the vaccine
is in stock and is coded as 0 if available but not valid, reported but not seen, not
available today, never available (see q1116_06 in SARA 2018 questionnaire). The
nostockout3mths_pcv variable indicate whether there has been no stockout of the
vaccine in the past 3 months. The neveravail_pcv variable indicate whether the
vaccine has never been available.

sara_2018 %>% mutate(
#PCV
vxinstock_pcv=ifelse(q1116_06==2 | q1116_06==3 |
q1116_06==4 | q1116_06==5,0,NA),
vxinstock_pcv=ifelse(q1116_06==1,1,vxinstock_pcv),
#Observed at least one valid
nostockout3mths_pcv=ifelse(q1117_06==1 | q1116_06==4,0,NA),
nostockout3mths_pcv=ifelse(q1117_06==2,1, nostockout3mths_pcv),
nostockout3mths_pcv=ifelse(is.na(vxinstock_pcv),NA,
nostockout3mths_pcv),
neveravail_pcv=ifelse(q1117_06==4 | q1116_06==5,1,NA))

Availability of vaccines in the stock: Rota

The following codes creates the new variables for the availability of rotavirus vaccine
(RotaC). The vxinstock_rotac variables indicate whether the vaccine is in stock
whic is coded as 0 if available not but valid, reported but not seen, not available
today, never available (see q1116_05 in SARA 2018 questionnaire). In addition,
the nostockout3mths_rotac variables indicate whether there has been no stockout
of the vaccine in the past 3 months while the neveravail_rotac variables indicate
whether the vaccine has never been available.

sara_2018 %>% mutate(
#RotaC
vxinstock_rotac=ifelse(q1116_05==2 | q1116_05==3 | q1116_05==4 |
q1116_05==5,0,NA), vxinstock_rotac=ifelse(q1116_05==1,1,vxinstock_rotac),
#Observed at least one valid
nostockout3mths_rotac=ifelse(q1117_06==1 | q1116_06==4,0,NA),
nostockout3mths_rotac=ifelse(q1117_06==2,1,
nostockout3mths_rotac),

nostockout3mths_rotac=ifelse(is.na(vxinstock_rotac),NA,
nostockout3mths_rotac),
neveravail_rotac=ifelse(q1117_06==4 | q1116_06==5,1,NA))

Storage and Cold Chain

Regrading storage and cold chain, new variable named fac_storesvx is created that
indicates whether the facility stores vaccines. The variable will be set to NA because
the SARA 2018 dataset does not have any specific questions on vaccine storage.

sara_2018 %>% mutate(
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#Storage and cold chain
#no specific questions on vaccine storage
fac_storesvx=NA)

Storage and Cold Chain: Functional Fridge

Regarding functional fridge availability, the follwoing code will will create a new
variable called fridge_avail that indicates whether the facility has a functional
fridge. The variable will be set to 0 if the fridge is available but not functional,
available but not known if functioning, or not available at all (see q1108 in SARA
2018 questionnaire). The variable will be set to 1 if the fridge is functional.

sara_2018 %>% mutate(
#Functional fridge
fridge_avail=ifelse(q1108==2 | q1108==3 | q1108==4,0,NA),
fridge_avail=ifelse(q1108==1,1,fridge_avail))

Storage and Cold Chain: Cold-chain monitoring system

For the cold chain monitoring system, the follwing code will create:

• coldchain_system : Indicates whether the facility has a cold chain monitoring
system. The system is considered to be present if either a thermometer or a
logger is available and functioning. The variable is is recoded as 0 if neither
Thermometer nor logger is available (see q1111 in SARA 2018 questionnaire).

• coldchain_system2x_30days: Indicates whether the cold chain monitoring
system has been checked twice in the past 30 days.

• fridge_temp : Indicates the temperature of the fridge. The temperature is
considered to be within the recommended range of 2 to 8 degrees Celsius if
the value is 1. The temperature is considered to be out of range if the value
is 3. The temperature recording is not available if the value is 2 or 4.

• vx_carriers: Indicates whether the facility has vaccine carriers (cold boxes).
The carriers are considered to be present if they are observed. These questions
are asked irrespective of storage response. The variable is recoded 1 if observed
other wise 0 reported not seen OR not available (see q1107_03 in SARA 2018
questionnaire).
sara_2018 %>% mutate(

coldchain_system=ifelse(q1111_01a==3 & q1111_02a==3,0,NA),
coldchain_system=ifelse(q1111_02a !=1 & (q1111_01a==2 |
q1111_01a==3),0,coldchain_system),
coldchain_system=ifelse(q1111_01a !=1 & (q1111_02a==2 |
q1111_02a==3),0, coldchain_system),
coldchain_system=ifelse(q1111_02a !=1 & q1111_01a==1 &
(q1111_01b==2 | q1111_01b==8), 0, coldchain_system),
coldchain_system=ifelse(q1111_01a !=1 & q1111_02a==1 &
(q1111_02b==2 | q1111_02b==8), 0, coldchain_system),
#cold chain system recoded yes if either of Thermometer or
#logger is observed and functioning
coldchain_system=ifelse((q1111_01a==1 & q1111_01b==1) |
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(q1111_02a==1 & q1111_02b==1),1,coldchain_system),
coldchain_system2x_30days=ifelse(coldchain_system==0 |
(coldchain_system==1 & (q1112 !=1 | q1113 !=1)),0,NA),
coldchain_system2x_30days=ifelse(coldchain_system==1 & q1112==1 &
q1113==1,1,coldchain_system2x_30days),
fridge_temp=ifelse(q1114==1, "Between 2 and 8 degrees C", ""),
fridge_temp=ifelse(q1114==3, "Out of range", fridge_temp),
fridge_temp=ifelse(q1114==2 | q1114==4,"Recording not available",
fridge_temp),
vx_carriers=ifelse(q1107_03==1,1,NA),
vx_carriers=ifelse(q1107_03==2 | q1107_03==3,0,vx_carriers))

Storage and Cold Chain: Ice packs for vaccine carriers For vaccine carriers
ice packs, the following new variables were created using the below code:

• vx_carriers_icepacks: Indicates whether the vaccine carriers have a set of
ice packs. The ice packs are considered to be present if they are observed.

• ipc_runningwater: Indicates whether the facility has running water (piped,
bicket with tap, or pour pitcher)

• ipc_soap : Indicates whether the facility has soap (hand washing soap or liquid
soap).

• ipc_sharpsbox : Indicates whether the facility has a sharps box (immunization
specific).

• ipc_sharpsbox_gen: Indicates whether the facility has a sharps box (general).

• ipc_latexgloves : Indicates whether the facility has latex gloves (general).

• ipc_disinfectant: Indicates whether the facility has disinfectant (general).

sara_2018 %>% mutate(
#Set of ice packs for vaccine carriers
vx_carriers_icepacks=ifelse(q1107_04==1,1,NA),
vx_carriers_icepacks=ifelse(q1107_04==2 |
q1107_04==3,0,vx_carriers_icepacks),
ipc_runningwater=ifelse(q600_01==2 | q600_01==3,0,NA),
ipc_runningwater=ifelse(q600_01==1,1,ipc_runningwater),

#Soap (hand washing soap OR liquid soap):
ipc_soap=ifelse(q600_02==2 | q600_02==3,0,NA),
ipc_soap=ifelse(q600_02==1,1,ipc_soap),

#Sharps box -- immunization specific and then general
#immunization specific
ipc_sharpsbox=ifelse(q1107_02==2 | q1107_02==3,0,NA),
ipc_sharpsbox=ifelse(q1107_02==1,1,ipc_sharpsbox),
#general
ipc_sharpsbox_gen=ifelse(q600_06==2 | q600_06==3,0,NA),
ipc_sharpsbox_gen=ifelse(q600_06==1,1,ipc_sharpsbox_gen),

#Latex gloves -general
ipc_latexgloves=ifelse(q600_04==2 | q600_04==3,0,NA),

18



ipc_latexgloves=ifelse(q600_04==1,1,ipc_latexgloves),

#Disinfectant -general
ipc_disinfectant=ifelse(q600_07==2 | q600_07==3,0,NA),
ipc_disinfectant=ifelse(q600_07==1,1,ipc_disinfectant))

Storage and Cold Chain: Disposable syringes or needles

For disposable syringes or needles (for both immunization specific and general), the
following new variables were created using the below code:

• ipc_dispsyringes: Indicates whether the facility has disposable syringes or
needles (immunization specific). The syringes or needles are considered to be
present if they are observed (see q1107_01 in SARA 2018 questionnaire).

• ipc_dispsyringes_gen: Indicates whether the facility has disposable syringes
or needles (general). The syringes or needles are considered to be present if
at least one of the two questions (q600_08 and q600_09) is answered ”yes”.

• ipc_pedalwastebin: Indicates whether the facility has a pedal waste bin (with
plastic liner) (general). The waste bin is considered to be present if it is
observed see q600_05 in SARA 2018 questionnaire)
sara_2018 %>% mutate(

#Disposable syringes or needles
# immunization specific
ipc_dispsyringes=ifelse(q1107_01==1,1,NA),
ipc_dispsyringes=ifelse(q1107_01==2 |
q1107_01==3,0,ipc_dispsyringes),
# general
ipc_dispsyringes_gen=ifelse(q600_08 !=1 & q600_09 !=1 &
!is.na(q600_08) & !is.na(q600_09),0,NA),
ipc_dispsyringes_gen=ifelse(q600_08==1 |
q600_09==1,1,ipc_dispsyringes_gen),

#Pedal waste bin (with plastic liner) -general
ipc_pedalwastebin=ifelse(q600_05==2 | q600_05==3,0,NA),
ipc_pedalwastebin=ifelse(q600_05==1,1,ipc_pedalwastebin),
#Other waste bin (conditional on not having a pedal waste
#bin available)
ipc_othwastebin=NA,
#Alcohol hand rub
ipc_alcoholhandrub=ifelse(q600_03==2 | q600_03==3,0,NA),
ipc_alcoholhandrub=ifelse(q600_03==1,1,ipc_alcoholhandrub))

The following line of codes creates new variables from SARA 2018 questionnaire for
masks, gowns, eye protection, vaccination records( such as immunization cards/child
health booklet, tally sheets, registers).

sara_2018 %>% mutate(
#Masks, Gowns, Eye Protection -- not explicitly asked about
ipc_masks=NA,
ipc_gowns=NA,
ipc_eyeprotect=NA,
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#IPC safety guidelines (page 11)
ipc_guidelines=ifelse(q422==2 | q422==3,0,NA),
ipc_guidelines=ifelse(q422==1,1,ipc_guidelines),

#Vaccination records (immunization cards/child
#health booklet, tally sheets, registers)

supply_blankimmuncards=ifelse(q1107_05==2 | q1107_05==3,0,NA),
supply_blankimmuncards=ifelse(q1107_05==1,1,
supply_blankimmuncards),
supply_tallysheets=ifelse(q1107_06==2 | q1107_06==3,0,NA),
supply_tallysheets=ifelse(q1107_06==1,1,supply_tallysheets),
supply_immunregister=ifelse(q1107_07==2 | q1107_07==3,0,NA),
supply_immunregister=ifelse(q1107_07==1,1,supply_immunregister))

Infrastructure

The following code generated new variable for measurement of availability of infras-
tructure such as electricity, functional generator and land line (phone) from from
SARA data set with the following columns:

• electricity: The source of electricity for the facility. Possible values are ”Con-
nected to grid, always available”, ”Connected to grid, sometimes interrupted”,
and ”Not connected to grid”. The ifelse() function in this case is used to create
new columns based on the values of existing columns. That is, the electricity
column is created by using the ifelse() function to check the values of the q410
and q412 columns. If q410 is equal to 1 and q412 is equal to 1, then the value
of electricity is set to ”Connected to grid, always available”. Otherwise, the
value of electricity is set to the empty string.

• funct_generator: Whether the generator is functional. Possible values are 1
(functional) and 0 (not functional).

• funct_solar: Whether the solar system is functional. Possible values are 1
(functional) and 0 (not functional).

• funct_computer: Whether the computer is functional. Possible values are 1
(functional) and 0 (not functional).

• funct_phone: Whether there is a functioning landline or cell phone. Possible
values are 1 (functional) and 0 (not functional).

• healthdata_system: Whether the facility has a health services data system
with regular updates. Possible values are NA (data not collected) and 1 (yes)
and 0 (no).

• cleanliness_score8pts: The cleanliness score of the facility, on a scale of 0 to
8. Possible values are NA (data not collected) and an integer from 0 to 8.

• clientfees_any: Whether the facility charges any fees to clients. Possible
values are NA (data not collected) and 1 (yes) and 0 (no).
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• clientfees_healthcard: Whether the facility charges a fee for health cards.
Possible values are NA (data not collected) and 1 (yes) and 0 (no).

• clientfees_vaccines: Whether the facility charges a fee for vaccines. Possible
values are NA (data not collected) and 1 (yes) and 0 (no).

• clientfees_syringe : Whether the facility charges a fee for syringes. Possible
values are NA (data not collected) and 1 (yes) and 0 (no).

The NA values in the healthdata_system, cleanliness_score8pts, clientfees_any,clientfees_healthcard,
clientfees_vaccines, and clientfees_syringe columns indicate that these data
were not collected for the SARA dataset.

sara_2018 %>% mutate(
#Infrastructure
electricity=ifelse(q410==1 & q412==1, "Connected to grid,

        always available", ""),
electricity=ifelse(q410==1 & (q412==2 | q412==3),
"Connected to grid, sometimes interrupted", electricity),
#Not connected to grid if no electric source,
#(generator OR solar system are main source of electricity)
electricity=ifelse(q408==2 | (q410==2 | q410==3), "Not connected

        to grid", electricity),
funct_generator=ifelse((q410==2 | q411==2) & q413==1,1,NA),
funct_generator=ifelse((q410==2 | q411==2) &
q413==2,0,funct_generator),
funct_generator=ifelse(q408==2,0,funct_generator),

funct_solar=ifelse((q410==3 | q411==3) & q416==1,1,NA),
funct_solar=ifelse((q410==3 | q411==3) & (q416==2 |
q416==3),0,funct_solar),
funct_solar=ifelse(q408==2,0,funct_solar),

funct_computer=ifelse(q403==2,0,q403),
#Functioning landline or cell phone
funct_phone=ifelse((q400==1 | q401==1),1,NA),
funct_phone=ifelse(q400==2 & q401==2,0,funct_phone),

#Has a health services data system with regular updates -
data not collected
healthdata_system=NA,
healthdata_system=NA,

#Cleaniness indicators - not collected for SARA
cleanliness_score8pts=NA,

#Fees - not collected in SARA
clientfees_any=NA,
clientfees_any=NA,

#Conditional on indicating separate fees

clientfees_healthcard=NA,
clientfees_vaccines=NA,
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clientfees_syringe=NA)

Staff and Training

The code below creates the following new columns from SARA 2018 data set. Note
in this case also that, the felse() function is used to create new columns based on
the values of existing columns.

• staff_gp: The number of general and specialist medical doctors (MDs) at
the facility.

• staff_nurses: The number of nursing professionals at the facility.

• staff_chw: The number of health extension workers (CHWs) at the facility.

• supv_lastvisit: The time since the last supervisor visit. Possible values are
”None”, ”Within past 1 month”, ”Within past 3 months”, and ”More than 3
months ago”.

• supv_pharmacy: Whether the supervisor reviewed the pharmacy (e.g. drug
stock out, expiry, records, etc.). Possible values are 0 (no) and 1 (yes).

• supv_staffing: Whether the supervisor reviewed the staffing (e.g. staff avail-
able and training). Possible values are 0 (no) and 1 (yes).

• supv_data: Whether the supervisor reviewed the data (e.g. completeness,
quality, and timely reporting). Possible values are 0 (no) and 1 (yes).
sara_2018 %>% mutate(

#Staff and training#
#Number of Staffs with qualifications:
staff_total=NA, #Focus on sub-group
#Generalist and specialist MDs
staff_gp=q200_01a + q200_02a,
#Nursing professionals
staff_nurses=q200_04a,
#Health extension workers
staff_chw=q200_12a,
#Meetings - management , staff-community meetings: data not
#collected in SARA
freq_mgmtmtgs=NA,
any_mgmtmtgs=NA,
freq_staffcommmtgs=NA,
any_staffcommmtgs=NA,
#Last supervisor visit
supv_lastvisit=ifelse(eth_19==2, "None",NA),
supv_lastvisit=ifelse(eth_19==1 & q430==1, "Within past 1 month",
supv_lastvisit),
supv_lastvisit=ifelse(eth_19==1 & q430==2, "Within past 3 months",
supv_lastvisit),
supv_lastvisit=ifelse(eth_19==1 & q430==3, "More than 3 months

        ago", supv_lastvisit),
# Pharmacy , Staffing , Data
supv_pharmacy=ifelse(q430==1 & q431_01==2,0,NA),
supv_pharmacy=ifelse(q430==1 & q431_01==1,1,supv_pharmacy),
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supv_staffing=ifelse(q430==1 & q431_02==2,0,NA),
supv_staffing=ifelse(q430==1 & q431_02==1,1,supv_staffing),
supv_data=ifelse(q430==1 & q431_03==2,0,NA),
supv_data=ifelse(q430==1 & q431_03==1,1,supv_data))

Supervisory actions

Regarding supervisory actions, the following code will create the following columns
from SARA 2018 dataset:

• supv_pharmacy : Whether the supervisor reviewed the pharmacy (e.g. drug
stock out, expiry, records, etc.). Possible values are 0 (no) and 1 (yes).

• supv_staffing: Whether the supervisor reviewed the staffing (e.g. staff avail-
able and training). Possible values are 0 (no) and 1 (yes).

• supv_data: Whether the supervisor reviewed the data (e.g. completeness,
quality, and timely reporting). Possible values are 0 (no) and 1 (yes).

• prov_epitrain_2yrs: Whether at least one provider has had different types of
training with respect to Expanded programme on immunization (EPI) in the
last 2 years. Possible values are 0 (no) and 1 (yes). The prov_epitrain_2yrs
column is created by using the ifelse() function to check the values of the
q1106_01 through q1106_07 columns under the SARA 2018 dataset. If all
of these values are equal to 3, then the value of prov_epitrain_2yrs is set
to 0, indicating that no provider has had any training in EPI in the last 2
years. Otherwise, the value of prov_epitrain_2yrs is set to 1, indicating that
at least one provider has had some training in EPI in the last 2 years.
sara_2018 %>% mutate(

#Supervisory actions - if no last supervisory list, recode to 0
supv_pharmacy=ifelse(supv_lastvisit=="None",0,supv_pharmacy),
supv_staffing=ifelse(supv_lastvisit=="None",0,supv_staffing),
supv_data=ifelse(supv_lastvisit=="None",0,supv_data),

#At least one EPI training in the last 2 years
prov_epitrain_2yrs=ifelse(q1106_01==3 & q1106_02==3 & q1106_03==3 &
q1106_04==3 & q1106_05==3 & q1106_06==3 & q1106_07==3,0,NA),
prov_epitrain_2yrs=ifelse(q1106_01==1 | q1106_02==1 | q1106_03==1 |
q1106_04==1 | q1106_05==1 | q1106_06==1 |
q1106_07==1,1,prov_epitrain_2yrs))

Specific types of training

For specific type of training, the following columns were created using the code
below:

• prov_iiptrain_2yrs: Whether immunization service provider has received
training in immunization in practice or equivalent immunization service deliv-
ery in the last 2 years. Possible values are 0 (no) and 1 (yes).

• prov_vxmangtrain_2yrs: Whether immunization service provider has re-
ceived training in vaccine management/handling and cold chain in the last 2
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years. Possible values are 0 (no) and 1 (yes).

• prov_datatrain_2yrs: Whether immunization service provider has received
training in data reporting and monitoring of service delivery in the last 2 years.
Possible values are 0 (no) and 1 (yes).

• prov_surveiltrain_2yrs: Whether immunization service provider has received
training in disease surveillance and reporting in the last 2 years. Possible val-
ues are 0 (no) and 1 (yes).

• prov_injsafetrain_2yrs: Whether immunization service provider has re-
ceived training in injection safety and waste management in the last 2 years.
Possible values are 0 (no) and 1 (yes).

• prov_redtrain_2yrs: Whether immunization service provider has received
training in Reaching Every District (RED) in the last 2 years. Possible values
are 0 (no) and 1 (yes).

• prov_pcvrotatrain_2yrs: Whether the provider has received training in PCV
or rotavirus vaccine in the last 2 years. Possible values are 0 (no) and 1 (yes).

• prov_episupv_2yrs: Whether the provider has received supportive supervi-
sion in EPI in the last 2 years. Possible values are 0 (no) and 1 (yes).

• prov_iipsupv_2yrs: Whether the provider has received supervision in immu-
nization in practice or equivalent immunization service delivery in the last 2
years. Possible values are 0 (no) and 1 (yes).

• prov_vxmangsupv_2yrs: Whether the provider has received supervision in
vaccine management/handling and cold chain in the last 2 years. Possible
values are 0 (no) and 1 (yes).

sara_2018 %>% mutate(
#Specific types of training in the last two years
#Immunization in practice
prov_iiptrain_2yrs=ifelse(q1106_01==1,1,NA), #
prov_iiptrain_2yrs=ifelse(q1106_01==3,0,prov_iiptrain_2yrs),
#Vaccine management/handling and cold chain
prov_vxmangtrain_2yrs=ifelse(q1106_02==1,1,NA), #
prov_vxmangtrain_2yrs=ifelse(q1106_02==3,0,prov_vxmangtrain_2yrs),

#Data reporting and monitoring of service delivery
prov_datatrain_2yrs=ifelse(q1106_03==1,1,NA), #
prov_datatrain_2yrs=ifelse(q1106_03==3,0,prov_datatrain_2yrs),
#Disease surveillance and reporting
prov_surveiltrain_2yrs=ifelse(q1106_04==1,1,NA), #
prov_surveiltrain_2yrs=ifelse(q1106_04==3,0,
prov_surveiltrain_2yrs),
#Injection safety and waste management
prov_injsafetrain_2yrs=ifelse(q1106_05==1,1,NA), #
prov_injsafetrain_2yrs=ifelse(q1106_05==3,0,
prov_injsafetrain_2yrs),
#Reaching Every District (RED)
prov_redtrain_2yrs=ifelse(q1106_06==1,1,NA), #
prov_redtrain_2yrs=ifelse(q1106_06==3,0,prov_redtrain_2yrs),
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#PCV or rotavirus vaccine training
prov_pcvrotatrain_2yrs=ifelse(q1106_07==1,1,NA), #
prov_pcvrotatrain_2yrs=ifelse(q1106_07==3,0,
prov_pcvrotatrain_2yrs),
#Supportive training
prov_episupv_2yrs=ifelse(q1106_01==3 & q1106_02==3 & q1106_03==3 &
q1106_04==3 & q1106_05==3 & q1106_06==3 & q1106_07==3,0,NA),
prov_episupv_2yrs=ifelse(q1106_01==2 | q1106_02==2 | q1106_03==2 |
q1106_04==2 | q1106_05==2 | q1106_06==2 |
q1106_07==2,1,prov_episupv_2yrs),
#Immunization in practice or equivalent immunization service
delivery training
prov_iipsupv_2yrs=ifelse(q1106_01==2,1,NA), #
prov_iipsupv_2yrs=ifelse(q1106_01==3,0,prov_iipsupv_2yrs),
#Vaccine management/handling and cold chain
prov_vxmangsupv_2yrs=ifelse(q1106_02==2,1,NA), #
prov_vxmangsupv_2yrs=ifelse(q1106_02==3,0,prov_vxmangsupv_2yrs))

Data reporting and monitoring of service delivery

Data reporting and monitoring of service delivery is recoded and the following
columns were created from SARA 2018 data set:

• prov_datasupv_2yrs: Whether immunization service provider has received
supervision in data reporting and monitoring of service delivery in the last 2
years. Possible values are 0 (no) and 1 (yes).

• prov_surveilsupv_2yrs: Whether immunization service provider has received
supervision in disease surveillance and reporting in the last 2 years. Possible
values are 0 (no) and 1 (yes).

• prov_injsafesupv_2yrs: Whether immunization service provider has re-
ceived supervision in injection safety and waste management in the last 2
years. Possible values are 0 (no) and 1 (yes).

• prov_redsupv_2yrs: Whether immunization service provider has received
supervision in Reaching Every District (RED) in the last 2 years. Possible
values are 0 (no) and 1 (yes).

• prov_pcvrotasupv_2yrs: Whether immunization service provider has received
supervision in PCV or rotavirus vaccine in the last 2 years. Possible values
are 0 (no) and 1 (yes).

• open_hours_perday: The number of hours per day that the facility is open to
clients. Possible values are ”4 hours or less”, ”5 to 8 hours”, ”9 to 16 hours”,
”17 to 23 hours”, and ”24 hours”.

• op_ip_avail: Whether the facility provides outpatient services only or out-
patient and inpatient services. Possible values are ”Outpatient services (no
routine inpatient)” and ”Outpatient services (with routine inpatient)”.

• ip_beds: The number of inpatient beds in the facility.
sara_2018 %>% mutate(

#Data reporting and monitoring of service delivery

25



prov_datasupv_2yrs=ifelse(q1106_03==2,1,NA), #
prov_datasupv_2yrs=ifelse(q1106_03==3,0,prov_datasupv_2yrs),
#Disease surveillance and reporting
prov_surveilsupv_2yrs=ifelse(q1106_04==2,1,NA),
prov_surveilsupv_2yrs=ifelse(q1106_04==3,0,prov_surveilsupv_2yrs),

#Injection safety and waste management
prov_injsafesupv_2yrs=ifelse(q1106_05==2,1,NA), #
prov_injsafesupv_2yrs=ifelse(q1106_05==3,0,prov_injsafesupv_2yrs),
#Reaching Every District (RED)
prov_redsupv_2yrs=ifelse(q1106_06==2,1,NA), #
prov_redsupv_2yrs=ifelse(q1106_06==3,0,prov_redsupv_2yrs),
#PCV or rotavirus vaccine training
prov_pcvrotasupv_2yrs=ifelse(q1106_07==2,1,NA), #
prov_pcvrotasupv_2yrs=ifelse(q1106_07==3,0,prov_pcvrotasupv_2yrs),
#basic client amenities (page 10)
#Outputs and broader services
open_hours_perday=ifelse(q417==1,"4 hours or less",""),
open_hours_perday=ifelse(q417==2,"5 to 8 hours",open_hours_perday),
open_hours_perday=ifelse(q417==3,"9 to 16 hours",open_hours_perday),
open_hours_perday=ifelse(q417==4,"17 to 23

        hours",open_hours_perday),
open_hours_perday=ifelse(q417==5,"24 hours",open_hours_perday),
#outpatient only (page 3)
op_ip_avail=ifelse(q010==1,
"Outpatient services (no routine inpatient)", NA),
op_ip_avail=ifelse(q010==2, "Outpatient services (with routine

        inpatient)", op_ip_avail),
#inpatient beds (page 7)
ip_beds=q301)

Finally, the following code selects the variables which are used for facility readiness
indicator from the processed data using dplyr library.

sara_2018 %>%
dplyr::select(
#Facility info
iso3, svy, fac_id, fac_name, admin1, admin1_name,
admin2, admin2_name,
urban, fac_type, fac_own, fac_weight,
svy_year, svy_month, svy_day, svy_complete ,
operational , latnum,
longnum, fac_comments1, fac_comments2,
#RI services and supplies
ri_services, ri_services_today, any_child_ri_guidelines ,
#Service frequency
starts_with("fac_freq"), starts_with("q1103"),
starts_with("out_freq"),
starts_with("q1104"),
#Vaccine-specific indicators
vxinstock_penta, nostockout3mths_penta, neveravail_penta,
vxinstock_bcg, nostockout3mths_bcg,
neveravail_bcg,
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vxinstock_mcv, nostockout3mths_mcv,
neveravail_mcv,
vxinstock_opv, nostockout3mths_opv, neveravail_opv,
vxinstock_pcv, nostockout3mths_pcv, neveravail_pcv,
vxinstock_rotac, nostockout3mths_rotac, neveravail_rotac,
vxinstock_mr, nostockout3mths_mr, neveravail_mr,
vxinstock_ipv, nostockout3mths_ipv, neveravail_ipv,
fac_storesvx , fridge_avail, coldchain_system,
coldchain_system2x_30days, fridge_temp, vx_carriers,
vx_carriers_icepacks, supply_blankimmuncards , supply_tallysheets ,
supply_immunregister ,
#IPC
ipc_runningwater , ipc_soap, ipc_sharpsbox , ipc_sharpsbox_gen,
ipc_latexgloves , ipc_disinfectant , ipc_dispsyringes ,
ipc_dispsyringes_gen, ipc_pedalwastebin ,
ipc_othwastebin , ipc_alcoholhandrub , ipc_masks, ipc_gowns,
ipc_eyeprotect , ipc_guidelines ,
#Infrastructure
electricity , funct_generator , funct_solar, funct_computer ,
funct_phone, healthdata_system, cleanliness_score8pts,
#Fees - not collected
clientfees_any, clientfees_healthcard , clientfees_vaccines ,
clientfees_syringe,
#Staff and training
staff_total, staff_gp, staff_nurses, staff_chw, any_mgmtmtgs ,
freq_mgmtmtgs, any_staffcommmtgs , freq_staffcommmtgs ,
supv_lastvisit , supv_pharmacy, supv_staffing, supv_data,
#Immunization specific training
starts_with("prov"),
#Outpatient/inpatient services
open_hours_perday, op_ip_avail, ip_beds,
#Indicators to compare
q1101, q1102_01, q1102_02, q1102_03, q1103, q1103_a, q1104, q1104_a)

The pre-processed data set is saved with new file name (sara_geolocated_ETH2018.csv)
under working directory. The following command is used to do so.

write.csv(sara_2018, file= 'sara_geolocated_ETH2018.csv',
row.names=FALSE)

We would like to remind the readers that data pre-processing for SARA 2016 can
be adopted directly using the above R code since the questionnaires for both SARA
2016 and SARA 2018 are the same.

2.2 Pre-processing 2020 Cold Chain Equipment
Inventory Survey

In this analysis, the CCEI data was used to construct indices for facility readiness
and community access domain. The following sections describes the steps for pre-
processing CCEI survey data for computing indicators of WHO readniness indicator
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paramers from the survey for Ethiopian case. We started with loading the required
libraries as we did in the previous sections.

The for loop you provided will iterate through the list of packages tidyverse, RCol-
orBrewer, ggplot2, reshape, knitr, data.table, geepack, lme4, xtable, readstata13,
MASS, lubridate, varhandle, readxl, sf and install and load each package that is
not already installed. The message() function will print a message to the console
indicating which package is being installed. The require() function is used to load
a package into the R environment. The character.only = TRUE argument tells the
require() function to only load the package if it is a character vector. The quietly =
TRUE argument tells the require() function to not print a message to the console if
the package is already installed.

#Load libraries
libs <- c('tidyverse', 'RColorBrewer', 'ggplot2', 'reshape', 'knitr',
'data.table', 'geepack', 'lme4', 'xtable', 'readstata13', #'mlmRev',
'MASS', 'lubridate', 'varhandle', 'readxl', 'sf')
for(l in libs){

if(!require(l,character.only = TRUE, quietly = TRUE)){\
message( sprintf('Did not have the required package << %s >>

    installed. Downloading now ... ',l))
install.packages(l)

}
library(l, character.only = TRUE, quietly = TRUE)

}
#Clear workspace
rm(list=ls())

Then we loaded our raw data using read.dta function from heaven library as follows:

#Upload facility data in .csv format
ccei_facility <- haven::read_dta(eth_coldchain , "STATA Data
Set_CCEI_Final_2020.dta") %>% as.data.table()

Processing the data

We started with converting all variables to lowercase for easier coding (using tolower())
function and creating a separate data frame with processed data, keeping ”original”
data as it is. The following code is used to do this:

#Convert all variables to lowercase for easier coding
names(ccei_facility) <- tolower(names(ccei_facility))

#Create a separate data frame with processed data,
keeping "original" data as it is
ccei <- ccei_facility %>%

Next, we created the following new variables that are easier to understand and
interact with onward code better using the below code:

• iso3: The ISO 3166-1 alpha-3 code for Ethiopia

• svy: The name of the survey, which is the Cold Chain Assessment 2020
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• fac_id: A unique identifier for each facility, starting at 10000

• fac_name: The name of the facility.

• fac_weight: The survey weight for the facility. This is not reported in the
CCEI dataset, so the value is NA.

• admin1: The name of the administrative region where the facility is located.

• admin1_name: The name of the administrative region where the facility is
located, recoded using the CCEI codebook.

• admin2: The name of the zone where the facility is located.

• admin3: The name of the woreda where the facility is located.

• admin4: The name of the kebele where the facility is located.

• fac_type: The type of facility, recoded using the CCEI codebook.

• svy_month: The month in which the facility was surveyed.

• svy_day: The day in which the facility was surveyed.

• svy_year: The year in which the facility was surveyed.
ccei_facility %>%

mutate(
#Survey and facility characteristics
iso3="ETH",
svy="Cold Chain Assessment 2020",
#Create facility ID starting at 10000
fac_id=(row_number() + 9999),
fac_name=str_to_title(q003),
#fac_weight=NA, # no weights reported
admin1=region,
# admin 1 is numeric, recode using codebook here
admin1_name=ifelse(admin1==1, "Tigray", NA),
admin1_name=ifelse(admin1==2, "Afar", admin1_name),
admin1_name=ifelse(admin1==3, "Amhara", admin1_name),
admin1_name=ifelse(admin1==4, "Oromia", admin1_name),
admin1_name=ifelse(admin1==5, "Somali", admin1_name),
admin1_name=ifelse(admin1==6, "Benshangul Gumz", admin1_name),
admin1_name=ifelse(admin1==7, "S.N.N.P", admin1_name),
admin1_name=ifelse(admin1==8, "Gambella", admin1_name),
admin1_name=ifelse(admin1==9, "Harari", admin1_name),
admin1_name=ifelse(admin1==10, "Addis Ababa", admin1_name),
admin1_name=ifelse(admin1==11, "Dire Dawa", admin1_name),
# admin 2-4 are characters -- no need to recode as did with admin 1
admin2=str_to_title(zone), admin3=str_to_title(woreda),
admin4=str_to_title(kebele))

Facility Type

ccei_facility %>%
mutate(
# fac type is numeric, recode using codebook
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fac_type=q007,
fac_type=ifelse(fac_type==1, "ESPA Central Store", fac_type),
fac_type=ifelse(fac_type==2, "ESPA Hub", fac_type),
fac_type=ifelse(fac_type==3, "Woreda Vaccine Store", fac_type),
fac_type=ifelse(fac_type==4, "Primary Hospital", fac_type),
fac_type=ifelse(fac_type==5, "General Hospital", fac_type),
fac_type=ifelse(fac_type==6, "Referral Hospital", fac_type),
fac_type=ifelse(fac_type==7, "Health Centre", fac_type),
fac_type=ifelse(fac_type==8, "Health Post", fac_type),
svy_month=qmonth,
svy_day=qday,
svy_year=qyear,
# ownership -- only public included in this survey

fac_own="Government/public")

Fixing latitude and Longitude that Exceeds 1000
Then number of GPS values appear to be the same (e.g., 14 LAT, 38 LONG in
Tigray) and some portion are just not possible since they’re in a different GPS
format). The following code is used to fix this issue:

ccei_facility %>% mutate(
#GPS
latnum_orig=glatitude ,
latnum=ifelse(latnum_orig==0,NA,latnum_orig),
longnum_orig=glongitude ,
longnum=ifelse(longnum_orig==0,NA,longnum_orig),

#Fixing lat-long that exceed 1000
latnum_alt=ifelse(latnum > 15 & latnum < 340, latnum/10,NA),
latnum_alt=ifelse(latnum >= 340 & latnum < 1600,
latnum/100,latnum_alt),
latnum_alt=ifelse(latnum >= 1600 & latnum < 16000,
latnum/1000,latnum_alt),
latnum_alt=ifelse(latnum >= 16000 & latnum < 160000,
latnum/10000,latnum_alt),
longnum_alt=ifelse(longnum > 300 & longnum < 1000, longnum/10,NA),
longnum_alt=ifelse(longnum > 999 & longnum < 10000,
longnum/100,longnum_alt),
longnum_alt=ifelse(longnum > 9999 & longnum < 100000,
longnum/1000,longnum_alt),
#Replace with fixed GPS
latnum=ifelse(!is.na(latnum_alt),latnum_alt, latnum),
longnum=ifelse(!is.na(longnum_alt),longnum_alt,longnum))

RI Service Availability
Regarding the RI services, from the CCEI survey questionnaire, we can see that

• Q12: 1= Vaccine storage only, 2= Immunization services without on site stor-
age, 3=vaccine storage and immunization services, 4= no vaccine storage and
immunization services

• Q13: Types of vaccination services offered: Q13_a=Static, Q13_b=Outreach,
Q13_c=Mobile
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• Q14: Frequency of facility based services: 1=Daily, 2=Weekly, 3= Every two
weeks, 4=Monthly, 5=Other

• specify Q14O

The above questions are recorded using metate() function as follows:
ccei_facility %>% mutate(
vxavail_fac_any=ifelse(q13_a==1,1,NA),
vxavail_fac_any=ifelse(q13_a==0,0,vxavail_fac_any),
vxavail_out_any=ifelse(q13_b==1,1,NA),
vxavail_out_any=ifelse(q13_b==0,0,vxavail_out_any),
vxavail_mobile_any=ifelse(q13_c==1,1,NA),
vxavail_mobile_any=ifelse(q13_c==0,0,vxavail_mobile_any),
fac_storesvx=ifelse(q12== 2 | q12==4,0,NA),
fac_storesvx=ifelse(q12==1 | q12==3,1,fac_storesvx))

The following code is used for counting yes for facility based or outreach based or
mobile based

ccei_facility %>% mutate(
ri_services=ifelse(vxavail_fac_any==1 | vxavail_out_any==1
| vxavail_mobile_any==1,1,NA),
ri_services=ifelse(vxavail_fac_any==0 & vxavail_out_any==0
& vxavail_mobile_any==0,0,ri_services),
#Response where no immunization services OR storage
#these have 0 for q13a and b
ri_services=ifelse(q12==4,0,ri_services))

At this point we have columns needed for community access. We then computed
columns needed for readiness indicator.

RI Service Frequency

CCEI 2020 does not ask about frequency of vaccine-specific RI services. Thus, we
re-coded any facility based RI services. Possible responses for open ended question
for q14 about frequency of facility based services are also cleaned up as follows:
ccei <- ccei %>%

mutate(
q14o=str_trim(as.character(q14o)) %>% tolower(),
# daily service provision q14 = 1 or various responses in other
fac_freq_daily=ifelse(q14 == 1, 1, NA),
fac_freq_daily=ifelse(q14o %in% c("5 times per day",
"5 times per week", "everyday exept bcg/m",
"monthly and daily", "daily and monthly",
"two times per aday", "2 times per aday"), 1, fac_freq_daily),

# weekly service provision q14 = 2 or various responses in other
fac_freq_weekly=ifelse(q14 == 2, 1, NA),
fac_freq_weekly=ifelse(q14o %in% c("twice/week",
"2* per week", "tewice a week", "3 days in a week",
"twice a week", "times per month4", "four times per month",
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"three times per week", "ten times per month",
"2 times per week", "3 times per week", "two times per

    week", "5times per month", "6 times per month",
"twice weekly", "2days per week", "2times/week",
"2times per week", "2x/week", "two time per week",
"two in week mondat a", "two in week", "monday and thursday",
"mondat and thursday", "per week 2 days",
"2 days in week", "twice per week", "2 dayes in week",
"2 per week", "biweekly", "bi weekly", "three times weekly",
"twice aweek", "two times aweeks", "two times per weeks",
"2 days per week", "3 days per week", "2daays per week",
"3 times/week", "two times/week", "three times/week",
"two days in a week", "2 days in a week",
"twice in a week", "4 days per week", "twice in aweek",
"3 times a week", "two days per week", "two days in a weak",
"2 days/wk", "2 dayswith in eek", "2x per week",
"mo thu", "tuesday wedensday", "two  times per week",
"two times/ wk", "twice per weak", "three times in aweek",
"two days in weeks", "two dayis in week",
"one day in week", "one day in a week",
"10day per month", "2 days per weak", "10 days per month",
"10 days per week", "three times a week",
"2 perweek", "two times weekly", "two times per wk",
"two times in week", "2 times a week",
"2 times per a week", "times perweek", "3 times per aweek",
"3 times per a week", "4 times per a week", "2 times aweek",
"2 times per aweek", "2 times per aweeek",
"3 times per awwk", "4 times per aweek", "2 days every week",
"two dayes per weeak", "three day per a week",
"2x a week", "two times a week", "twice week", "once

    aweek", "once in aweek", "twicwe in aweek",
"twice in a weeek", "3days per week", "1 day per week",
"2days weekly", "twicw weekly", "twies perweek",
"two days perweek", "weeklysometimes ever",
"2 days aweak", "two days a weak", "2 days a weak",
"two days aweak", "3 days a weak", "2days a weak",
"2 dats in aweek", "two days a week",
"two days withn a wee", "2 day per week",
"wikly 3day", "5 times in month", "7 days in a month",
"6 times in a month", "5days per month",
"2 days in aweek"), 1, fac_freq_weekly))

We then code monthly or every two weeks as monthly service provision. Monthly
service provision q14 = 4, every two weeks q14 = 3 or various reponses in q14o are
recoded as follows:

ccei <- ccei %>%
mutate(

fac_freq_monthly=ifelse(q14 == 3 | q14 == 4, 1, NA),
fac_freq_monthly=ifelse(q14o %in% c("3/month",
"twice monthly", "three times per mont",
"third times a month", "3 times per month",
"2 times per month", "two times per month",
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"3 times amonth", "2 days in month", "three times/mont",
"thee times per month", "2times per month",
"every three week", "two days per month",

"three days per month", "three times amonth",
"3 times in a month", "three times a month", "monthly",
"every 3 week", "3times per month", "3times permonth",
"every 17 days", "3 days per month", "3times amonth",
"2 times amonth", "3 times a month",
"2 times per a month", "2 times a month",
"3 times per a month", "2 times per amonth",
"3 time per amonth", "3 times per amonth",
"2 timespeer amonth", "twice a month", "tice a month",
"three x per a month", "3x times a month",
"3x a month", "2x a month", "three times in a month",
"twice in amonth", "twice in month", "3timesin amonth",
"every 3 weeks", "2 days a month",
"three times in month"), 1, fac_freq_monthly))

The quarterly service provision for various responses in q14o are recoded as follows:
ccei <- ccei %>%

mutate(
fac_freq_quarterly=ifelse(q14o %in% c("once in two month",
"every 45 days", "every two month", "in two or three mont",
"two month", "in two or three mont", "every two month"), 1, NA))

Any facility-based services provision is then re-coded as follows:
ccei <- ccei %>%

mutate(
# any facility-based services provided?
fac_freq_any = ifelse(fac_freq_daily==1 | fac_freq_weekly==1
| ac_freq_monthly==1 | fac_freq_quarterly == 1,1,NA),
# recode every six month as facility service provision

#(less than #quarterly)
fac_freq_any = ifelse(ri_services == 1 & q14o %in%
c("every 6 month (twic)", "every 6 month"), 1,
fac_freq_any), fac_freq_any=ifelse(ri_services==0 | q14o %in%
c("0", "no service", "not given", "out reach only",
"no vaccination", "no serice"),0,fac_freq_any))

Outreach-based services

The 2020 CCEI survey does not ask about frequency of outreach but can extract
information on the number of outreach sites which is recoded as follows:
ccei <- ccei %>%

mutate(
num_outreach_site = as.numeric(q17),
num_mobile_site = as.numeric(q18),
out_freq_any = ifelse(ri_services == 1 & (vxavail_out_any
== 1 | vxavail_mobile_any == 1), 1, NA),
out_freq_any = ifelse(ri_services == 1 & (vxavail_out_any
== 0 & vxavail_mobile_any == 0), 0, out_freq_any),
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out_freq_any = ifelse(ri_services == 0, 0, out_freq_any))

Vaccine stocks

The 2020 CCEI survey does not ask about data on stocks but do have info on
stockouts in last 3 months which is recoded as follows:

ccei <- ccei %>%
mutate(
#Penta
#vxinstock_penta = NA,
nostockout3mths_penta = ifelse(q21s_c==1, 0, NA),
nostockout3mths_penta = ifelse(q21s_c==0, 1, nostockout3mths_penta),
#neveravail_penta = NA,
#BCG
#vxinstock_bcg = NA,
nostockout3mths_bcg = ifelse(q21s_a==1, 0, NA),
nostockout3mths_bcg = ifelse(q21s_a==0, 1, nostockout3mths_bcg),
#neveravail_bcg = NA,
#MCV
#vxinstock_mcv = NA,
nostockout3mths_mcv = ifelse(q21s_f==1, 0, NA),
nostockout3mths_mcv = ifelse(q21s_f==0, 1, nostockout3mths_mcv),
#neveravail_mcv = NA,
#Polio - OPV
#vxinstock_opv = NA,
nostockout3mths_opv = ifelse(q21s_b==1, 0, NA),
nostockout3mths_opv = ifelse(q21s_b==0, 1, nostockout3mths_opv),
#neveravail_opv = NA,
#Polio - IPV
#vxinstock_ipv = NA,
nostockout3mths_ipv = ifelse(q21s_e==1, 0, NA),
nostockout3mths_ipv = ifelse(q21s_e==0, 1, nostockout3mths_ipv),
#neveravail_ipv = NA,
#PCV
#vxinstock_pcv = NA,
nostockout3mths_pcv = ifelse(q21s_d==1, 0, NA),
nostockout3mths_pcv = ifelse(q21s_d==0, 1, nostockout3mths_pcv),
#neveravail_pcv = NA,
#RotaC
#vxinstock_rotac = NA,
nostockout3mths_rotac= ifelse(q21s_g==1, 0, NA),
nostockout3mths_rotac = ifelse(q21s_g==0, 1, nostockout3mths_rotac),
#neveravail_rotac = NA,
##TT
#vxinstock_tt = NA,
nostockout3mths_tt= ifelse(q21s_h==1, 0, NA),
nostockout3mths_tt = ifelse(q21s_h==0, 1, nostockout3mths_tt)
#neveravail_tt = NA)

Storage and cold chain
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Regarding functional fridge (number of functional fridges that the facility owns), if
reported 0 functional fridges or all fridges they report status for are non functional
or uninstalled or obsolete, then we code it as 0.

ccei <- data.table(ccei)
fridge_cols <- c(paste0("h_0", 1:9), paste0("h_", 10:20)
ccei[, (fridge_cols) := lapply(.SD, function(x) x == "1"),
.SDcols = fridge_cols]
ccei[, fridge_avail := ifelse(q31b == 0 | rowSums(.SD) ==
0,0,NA), .SDcols= fridge_cols])

If report other than 0, functional fridges and in individual fridge columns report at
least 1 functional.

ccei[, fridge_avail := ifelse(q31b>0 & rowSums(.SD)
>0,1,fridge_avail), .SDcols = fridge_cols]#Available AND functional

Temperature monitoring system in use in at least 1 fridge.
#Matches SARA where don't ask about number of fridges
coldchain_cols <- c(paste0("j_0", 1:9), paste0("j_", 10:20))
ccei[, (coldchain_cols) := lapply(.SD, function(x) x != ""),
.SDcols = coldchain_cols]
ccei[, coldchain_system := ifelse(rowSums(.SD) == 0, 0, NA),
.SDcols = coldchain_cols]
ccei[, coldchain_system := ifelse(rowSums(.SD) > 0, 1,
coldchain_system), .SDcols = coldchain_cols]

Facility Infrastructure

ccei <- ccei %>% mutate(
# Electricity
electricity = ifelse(q24 == 1 | q24 == 2, "Connected to

    grid, more than 16 hours per day", ""),
electricity = ifelse(q24 == 3 , "Connected to grid,

    4 to 8 hours per day", electricity),
electricity = ifelse(q24 == 4 , "Connected to grid,

    less than 4 hours per day", electricity),
electricity = ifelse(q24 == 5 , "Not connected to  grid", electricity),
#Functional generator available
funct_generator = ifelse(q29 == 1, 1, NA),
funct_generator = ifelse(q29 == 0, 0, funct_generator),
#Functional solar power available

funct_solar = ifelse(q28 == 1 & q28a == 1, 1, NA),
funct_solar = ifelse(q28 == 0, 0, funct_solar),
funct_solar = ifelse(q28 == 1 & (q28a == 2 | q28a == 3),
0, funct_solar))

Adding admin2 (zone) names based on GPS

#Adding admin 2 names based on GPS
shp <- read_rds(file.path(work_root,
"lbd_standard_admin_2.shp"))
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shp.admin2 <- shp %>% subset(ADM0_NAME == "Ethiopia") #%>%
as(Class="Spatial")
temp <- st_as_sf(ccei[!(is.na(latnum) | is.na(longnum))],
coords= c("longnum", "latnum"), crs = 4326)
temp <- st_join(temp, shp.admin2, join = st_within)
temp <- cbind(temp, st_coordinates(temp)) %>% as.data.table
setnames(temp,
old = c("X", "Y"), new = c("longnum", "latnum"))
ccei <- rbind(ccei[is.na(longnum) | is.na(latnum)], temp[,
-c("geometry"), with = F], fill = TRUE)

Then, the processed variables are selected and ordered using select() function from
dplyr library as follows:

#Selecting processed variables and ordering them
ccei <- ccei %>% dplyr::select(
#Facility info
iso3, svy, svy_year, svy_month, svy_day, fac_id,
fac_name, admin1, admin1_name, admin2, admin3, admin4,
fac_type, latnum, longnum, latnum_orig, longnum_orig,
starts_with("vxavail"), fac_storesvx ,

#geography as assinged by shapefile
ADM1_NAME, ADM2_NAME,
#RI services
ri_services,
#Service frequency
starts_with("fac_freq"), starts_with("q13"), q14, q14o,
starts_with("out_freq"), starts_with("num_"),
#Vaccine-specific indicators
nostockout3mths_penta,
nostockout3mths_bcg,
nostockout3mths_mcv,
nostockout3mths_opv,
nostockout3mths_pcv,
nostockout3mths_rotac,
nostockout3mths_tt,
nostockout3mths_ipv,
fridge_avail, coldchain_system,
#Infrastructure
electricity , funct_generator , funct_solar, funct_phone)

We then save the geolocated and initially extracted, processed dataset on our work-
ing directory using the code below:
write.csv(ccei, file= "ccei_geolocated_readiness.csv",
row.names=FALSE)
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Chapter 3

Missing Value Managment

As part of computing the indexes for the three domains, we conducted missigness
checking for SARA survey. The result is presented as follows:

3.1 Multiple Imputation for SARA 2018
#Load libraries

libs <- c('tidyverse', 'RColorBrewer', 'ggplot2', 'reshape2', 'viridis',
'data.table', 'GGally', 'expss', 'fedmatch',
'measurements', 'fuzzyjoin', 'geepack', 'mice', 'mlmRev', 'lme4')

for(l in libs){
if(!require(l,character.only = TRUE, quietly = TRUE)){

message(sprintf('Did not have the required package << %s >>
    installed. Downloading now ... ',l))

install.packages(l)
}
library(l, character.only = TRUE, quietly = TRUE)

}

#Clear workspace
rm(list=ls())

After loading the required packages and cleaning the working environment, we can
now call the necessary color schemes and load the required data sets. (Note that,
now we are going to use the cleaned version of SARA data set which is pre-processed
following steps presented under the previous chapter).

#Setting up tans/yellows
brewer <- brewer.pal(11, "PuOr")
dktan <- brewer[1]
medtan <- brewer[2]
lttan <- brewer[3]
golden <- brewer[4]
ltgolden <- brewer[5]
whitish <- brewer[6]
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##Setting up blues
brewer <- brewer.pal(9, "Blues")
blue <- brewer[6]
medblue <- brewer[7]
dkblue <- brewer[8]
vdkblue <- brewer[9]

#Exemplar color palette
dkblue <- "#00416b"
teal <- "#0098a7"
orange <- "#ff6400"
purple <- "#472677"
lightGrey <- 'grey90'

#Other colors
magenta <- "#c92196"
eghblue <- "0a6bd1"
eghgreen <- "87d45c"
eghyellow <- "ffb634"

#Teal shades/tints
dkteal <- "#005159"
medteal <- "#4cb6c1"
ltteal <- "#99d5db"

#Orange shades/tints
dkorange <- "#cc5000"
medorange <- "#ff8332"
ltorange <- "#ffa266"
black <- "black"

After setting the working environment, we then load data (located in Desktop with
file name of sara_geolocated_ETH2018.csv) as follows:

sara2018 <- read.csv("Desktop/sara_geolocated_ETH2018.csv")

Now, we have loaded the required packages, cleaned the working environment and
loaded our data set to our working environment. We proceed to computing the
missingness of key indicators pertaining to readiness.

The following code is used to compute ’true’ missingness for key indicators pertaining
to readiness. The first step is to account for skip patterns (also knows as what
should be recoded as zeros versus true missingness). We first subset to facilities
with completed surveys and that are operational, and where RI status is known.

sara2018_processed <- sara2018 %>%
filter(svy_complete==1 & operational==1 &

!is.na(ri_services)) %>%
mutate(
#RI services today: if no RI services at all, none today
ri_services_today=ifelse(ri_services==0,0, ri_services_today),
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#Service frequency
#Facility based services
fac_freq_any=ifelse(ri_services==0,0, fac_freq_any),
fac_freq_quarterly=ifelse(ri_services==0,0,
fac_freq_quarterly),
fac_freq_quarterly=ifelse(!is.na(fac_freq_any) &
is.na(fac_freq_quarterly),0, fac_freq_quarterly),
fac_freq_monthly=ifelse(ri_services==0,0, fac_freq_monthly),
fac_freq_monthly=ifelse(!is.na(fac_freq_any) &
is.na(fac_freq_monthly),0, fac_freq_monthly),
fac_freq_weekly=ifelse(ri_services==0,0, fac_freq_weekly),
fac_freq_weekly=ifelse(!is.na(fac_freq_any) &
is.na(fac_freq_weekly),0, fac_freq_weekly),
fac_freq_daily=ifelse(ri_services==0,0, fac_freq_daily),
fac_freq_daily=ifelse(!is.na(fac_freq_any) &
is.na(fac_freq_daily),0, fac_freq_daily),
#Outreach services
out_freq_any=ifelse(ri_services==0,0, out_freq_any),
out_freq_quarterly=ifelse(ri_services==0,0,
out_freq_quarterly),
out_freq_quarterly=ifelse(!is.na(out_freq_any) &
is.na(out_freq_quarterly),0,out_freq_quarterly),
out_freq_monthly=ifelse(ri_services==0,0,
out_freq_monthly), out_freq_monthly=ifelse(!is.na(out_freq_any) &
is.na(out_freq_monthly),0,out_freq_monthly),
out_freq_weekly=ifelse(ri_services==0,0,
out_freq_weekl)
,out_freq_weekly=ifelse(!is.na(out_freq_any) &
is.na(out_freq_weekly),0,out_freq_weekly),
out_freq_daily=ifelse(ri_services==0,0,out_freq_daily),
out_freq_daily=ifelse(!is.na(out_freq_any) &
is.na(out_freq_daily),0,out_freq_daily))

The following code is used to check for cold chain related monitoring system (such
as availability of fridge)

sara2018_processed <- sara2018 %>%
mutate(
#Storage + cold chain
fridge_avail=ifelse(ri_services==0,0,fridge_avail),
coldchain_system=ifelse(ri_services==0,0,coldchain_system),

#Accounting for not asking if there's a cold chain
#monitoring system if there is no fridge
coldchain_system=ifelse(fridge_avail==0 &
is.na(coldchain_system),0,coldchain_system),
coldchain_system2x_30days=ifelse(ri_services==0,0,
coldchain_system),
coldchain_system2x_30days=ifelse(fridge_avail==0 & is.na(coldchain_system2x_30days),0,coldchain_system2x_30days),
#Converting fridge temp to binary variable
#fridge_temp=as.character(fridge_temp),
fridge_temp2to8=ifelse(fridge_temp==
"Between 2 and 8 degrees C",1,NA),
fridge_temp2to8=ifelse(fridge_temp=="Out of
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            range",0,fridge_temp2to8),
#Reflects that there's no fridge and no cold chain
#monitoring system -- if fridge_avail==0 &

#cold_chain_system !=0, then #it's likely that the
#fridge is not functional but exists
fridge_temp2to8=ifelse(fridge_avail==0 & coldchain_system==0 &
is.na(fridge_temp),0,fridge_temp2to8))

Infrastructure

sara2018_processed <- sara2018 %>%
mutate(electricity=as.character(electricity),
electricity_gridalways=ifelse(electricity !="Connected

        to grid, always available",0,NA),
electricity_gridalways=ifelse(electricity=="Connected

        to grid, always available",1,electricity_gridalways))

Vaccination supplies

sara2018_processed <- sara2018 %>%
mutate(

#Vaccination supplies
vx_carriers=ifelse(ri_services==0,0,vx_carriers),
vx_carriers_icepacks=ifelse(ri_services==0,0,
vx_carriers_icepacks),
supply_blankimmuncards=ifelse(ri_services==0,0,
supply_blankimmuncards),
supply_tallysheets=ifelse(ri_services==0,0,supply_tallysheets),
supply_immunregister=ifelse(ri_services==0,0,
supply_immunregister))

RI Guidelines

sara2018_processed <- sara2018 %>%
mutate(

#Guidelines - if no RI services, replace with 0
any_child_ri_guidelines=ifelse(ri_services==0,0,
any_child_ri_guidelines))

Infection prevention and control (IPC)

sara2018_processed <- sara2018 %>%
mutate(
#IPC
ipc_sharpsbox=ifelse(ri_services==0,0,ipc_sharpsbox),
ipc_dispsyringes=ifelse(ri_services==0,0,ipc_dispsyringes))

EPI Training
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sara2018_processed <- sara2018 %>%
mutate(

#Epi training
prov_epitrain_2yrs=ifelse(ri_services==0,0,
prov_epitrain_2yrs),
prov_iiptrain_2yrs=ifelse(ri_services==0,0,
prov_iiptrain_2yrs), prov_vxmangtrain_2yrs=ifelse(ri_services==0,0, prov_vxmangtrain_2yrs),prov_datatrain_2yrs=
ifelse(ri_services==0,0, prov_datatrain_2yrs),
prov_surveiltrain_2yrs=ifelse(ri_services==0,0,
prov_surveiltrain_2yrs), prov_injsafetrain_2yrs=ifelse(ri_services==0,0,
prov_injsafetrain_2yrs),
prov_redtrain_2yrs=ifelse(ri_services==0,0,
prov_redtrain_2yrs),
prov_pcvrotatrain_2yrs=ifelse(ri_services==0,0,
prov_pcvrotatrain_2yrs))

Vaccine stocks

The available vaccines for SARA 2018 are pentavalent, MCV, OPV, BCG, PCV,
Rotavirus. Note that the skip logic for SARA 2018 does not ask about vaccine
stocks if no RI services today and if the fridge is not functional. Thus it is recoded
as zero.

sara2018_processed <- sara2018 %>%
mutate(
#Pentavalent
vxinstock_penta=ifelse(ri_services==0,0,vxinstock_penta),
vxinstock_penta=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_penta),
nostockout3mths_penta=ifelse(ri_services==0,0,
nostockout3mths_penta),
nostockout3mths_penta=ifelse(ri_services_today==0
& fridge_avail !=1,0, nostockout3mths_penta),
neveravail_penta= ifelse(ri_services==0,0,neveravail_penta),
neveravail_penta=ifelse(vxinstock_penta== 1
|nostockout3mths_penta==1,0,neveravail_penta),
neveravail_penta=ifelse(ri_services_today==0 &
fridge_avail !=1, 0, neveravail_penta),
#MCV
vxinstock_mcv=ifelse(ri_services==0,0,vxinstock_mcv),
vxinstock_mcv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_mcv),
nostockout3mths_mcv=ifelse(ri_services==0,0,
nostockout3mths_mcv),
nostockout3mths_mcv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, nostockout3mths_mcv),
neveravail_mcv=ifelse(ri_services==0,0,neveravail_mcv),
neveravail_mcv=ifelse(vxinstock_mcv==1 |
nostockout3mths_mcv==1,0,neveravail_mcv),
neveravail_mcv=ifelse(ri_services_today==0 &
fridge_avail!=1,0, neveravail_mcv),
#BCG
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vxinstock_bcg=ifelse(ri_services==0,0,vxinstock_bcg),
vxinstock_bcg=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_bcg),
nostockout3mths_bcg=ifelse(ri_services==0,0,
nostockout3mths_bcg),
nostockout3mths_bcg=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, nostockout3mths_bcg),
neveravail_bcg=ifelse(ri_services==0,0,neveravail_bcg),
neveravail_bcg=ifelse(vxinstock_bcg==1 |
nostockout3mths_bcg==1,0,neveravail_bcg),
neveravail_bcg=ifelse(ri_services_today==0 &
fridge_avail !=1,0, neveravail_bcg),
#OPV
vxinstock_opv=ifelse(ri_services==0,0,vxinstock_opv),
vxinstock_opv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_opv),
nostockout3mths_opv=ifelse(ri_services==0,0,
nostockout3mths_opv),
nostockout3mths_opv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, nostockout3mths_opv),
neveravail_opv=ifelse(ri_services==0,0,neveravail_opv),
neveravail_opv=ifelse(vxinstock_opv==1 |
nostockout3mths_opv==1,0,neveravail_opv),
neveravail_opv=ifelse(ri_services_today==0 &
fridge_avail !=1, 0, neveravail_opv),
#PCV
vxinstock_pcv=ifelse(ri_services==0,0,vxinstock_pcv),
vxinstock_pcv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_pcv),nostockout3mths_pcv=
ifelse(ri_services==0,0,nostockout3mths_pcv),
nostockout3mths_pcv=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, nostockout3mths_pcv),
neveravail_pcv=ifelse(ri_services==0,0,neveravail_pcv),
neveravail_pcv=ifelse(vxinstock_pcv==1 |
nostockout3mths_pcv==1,0,neveravail_pcv),
neveravail_pcv=ifelse(ri_services_today==0 &
fridge_avail !=1, 0, neveravail_pcv),
#Rotavirus
vxinstock_rotac=ifelse(ri_services==0,0,vxinstock_rotac),
vxinstock_rotac=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, vxinstock_rotac),
nostockout3mths_rotac=ifelse(ri_services==0,0,
nostockout3mths_rotac),
nostockout3mths_rotac=ifelse(ri_services_today !=1 &
fridge_avail !=1,0, nostockout3mths_rotac),
neveravail_rotac=ifelse(ri_services==0,0,neveravail_rotac),
neveravail_rotac=ifelse(vxinstock_rotac==1 |
ostockout3mths_rotac==1,0,neveravail_rotac),
neveravail_rotac=ifelse(ri_services_today==0 &
fridge_avail !=1, 0, neveravail_rotac))

Data Preparation for multiple imputation
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sara2018_formi <- sara2018_processed %>%
mutate(fac_id=as.character(fac_id)) %>%
dplyr::select(
fac_id,
#Vaccination indicators for potential prediction
#RI services and supplies
ri_services, ri_services_today,
any_child_ri_guidelines ,
#Service frequency
starts_with("fac_freq"), starts_with("out_freq"),
#Vaccine-specific indicators
vxinstock_penta, nostockout3mths_penta,
neveravail_penta,
vxinstock_bcg, nostockout3mths_bcg, neveravail_bcg,
vxinstock_mcv, nostockout3mths_mcv, neveravail_mcv,
vxinstock_opv, nostockout3mths_opv, neveravail_opv,
vxinstock_pcv, nostockout3mths_pcv, neveravail_pcv,
vxinstock_rotac, nostockout3mths_rotac,
neveravail_rotac,fridge_avail, coldchain_system,
coldchain_system2x_30days, fridge_temp2to8,
vx_carriers, vx_carriers_icepacks,
supply_blankimmuncards , supply_tallysheets ,
supply_immunregister ,
#IPC, infrastructure , staff and training
ipc_sharpsbox , ipc_dispsyringes ,

electricity_gridalways , staff_chw, staff_nurses,
prov_epitrain_2yrs,
#Additional predictors
funct_computer, funct_phone,
ipc_runningwater , ipc_soap, ipc_disinfectant ,
ipc_pedalwastebin , ipc_alcoholhandrub ,
ipc_guidelines , ip_beds)

Now, our data set is ready for imputation. We can save the processed data to our
working directory and proceed to imputation part.

write.csv(sara2018_formi, file=sara2018_formi.csv)

Now, we can proceed to imputation part. The following steps were caried out to
conduct imputation on SARA 2018 data set. We start with making predictor matrix
excluding fac_id and for variables with missingness.

#All variables
allvars_sara2018 <- names(sara2018_formi)
#Matrix of all variables
matrix_sara2018 <- matrix(0, ncol = length(allvars_sara2018 ),
nrow = length(allvars_sara2018))
rownames(matrix_sara2018) <- allvars_sara2018
colnames(matrix_sara2018) <- allvars_sara2018
#Variables with any missingness in original dataset
missVars_sara2018 <- names(sara2018_formi)
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[colSums(is.na(sara2018_formi)) > 0]
#Variables without any missingness to serve as predictors (imputers)
predVars <- names(sara2018_formi)
[colSums(is.na(sara2018_formi))==0]
#Remove "fac_id" from predictor variables
vars_impute <- predVars[!predVars %in% c("fac_id")]
#Set up predictor (imputer) matrix
imputerVars <- intersect(unique(vars_impute),
allvars_sara2018)
imputerMatrix <- matrix_sara2018
imputerMatrix[,imputerVars] <- 1
#Variables for imputation
imputedVars_sara2018 <-intersect(unique(c(allvars_sara2018)),
missVars_sara2018)imputedVars_sara2018
imputedMatrix_sara2018 <- matrix_sara2018
imputedMatrix_sara2018[imputedVars_sara2018,] <- 1
predictorMatrix_sara2018 <- imputerMatrix

imputedMatrix_sara2018 diag(predictorMatrix_sara2018)<- 0

In this study, MICE algorithm [3] was adopted to compute missigness of key indi-
cators of readiness domain from SARA 2018 and SARA 2018 survey. The following
sections present the steps followed during implementation of MICE algorithm in R
software.

3.2 MICE for SARA 2018

#setting up methods
imp0 <- mice(data=sara2018_formi,maxit=0)
meth = imp0$method
sara2018_mice <- mice(data=sara2018_formi, m=10,
maxit=100, method=meth, predictorMatrix=predictorMatrix_sara2018, print=TRUE)
sara2018_mice_long <- mice::complete(sara2018_mice,
action="long", include=TRUE)

The following code is used for computing and comparing indices for original data
versus imputation.

###Original data inputs
sara2018_processed[is.na(sara2018_processed)] <-0
sara2018index_org <- sara2018_processed %>%

mutate(aux_coldchain=ifelse(fridge_avail==1 &
coldchain_system==1 & coldchain_system2x_30days==1 &
fridge_temp2to8==1,1,0),
aux_power_coldchain=ifelse(fridge_avail==1 &
electricity_gridalways==1,1,0),
vxcarrier_withicepacks=ifelse(vx_carriers==1 &
vx_carriers_icepacks==1,1,0),

supply_tallyregister=ifelse(supply_tallysheets==1 |
supply_immunregister==1,1,0),
staff_epi=prov_epitrain_2yrs,
fac_index=(any_child_ri_guidelines + staff_epi +
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vxcarrier_withicepacks + ipc_dispsyringes +
ipc_sharpsbox + supply_blankimmuncards +
supply_tallyregister + fridge_avail + coldchain_system
+ fridge_temp2to8 + aux_coldchain +
aux_power_coldchain)/12,
fac_index=ifelse(ri_services==0 |
fac_freq_any==0,NA,fac_index),
## Replacing with NA if no RI or no facility -based #services
source="SARA 2018",
type="Original (missing as 0s)")
#Imputed data
sara2018index_imputed <- sara2018_mice_long %>%
filter(.imp !=0) %>% ##Filter out non-imputed data
mutate(aux_coldchain=ifelse(fridge_avail==1 &
coldchain_system==1 & coldchain_system2x_30days==1 &
fridge_temp2to8==1,1,0), aux_power_coldchain=ifelse(fridge_avail==1 &
electricity_gridalways==1,1,0),
vxcarrier_withicepacks=ifelse(vx_carriers==1 &
vx_carriers_icepacks==1,1,0),
supply_tallyregister=ifelse(supply_tallysheets==1 |
supply_immunregister==1,1,0),
staff_epi=prov_epitrain_2yrs,
fac_index=(any_child_ri_guidelines + staff_epi +
vxcarrier_withicepacks + ipc_dispsyringes + ipc_sharpsbox +
supply_blankimmuncards + supply_tallyregister +
fridge_avail + coldchain_system +
fridge_temp2to8 + aux_coldchain +
aux_power_coldchain)/12,
fac_index=ifelse(ri_services==0 |
fac_freq_any==0,NA,fac_index),
## Replacing with NA if no RI or no facility -based services
source="SARA 2018", type="Imputed")
#Taking the average across imputations
sara2018index_mivalues <- sara2018index_imputed %>%

group_by(fac_id) %>%
summarise(fac_index_imp=mean(fac_index),
fac_index_sd=sd(fac_index))
sara2018index_compare <- merge(sara2018index_org,
sara2018index_mivalues , by="fac_id")
# save the imputed data

write.csv(sara2018_mice_long,"sara_imputed_ETH2018.csv",row.names=FALSE)

The above pre-processed data is then used to plot scatter diagram showing imputed
index scores (average of 100 iterations of 10 imputations each) against the original
index scores (missingness hard coded as 0s). The code and the results are presented
below

(ggplot(sara2018index_compare, aes(x=fac_index*100,
y=fac_index_imp*100)) +
geom_abline(a=0, b=1) +
geom_jitter(height=0.7, width=0.7, size=6, alpha=0.8,
aes(colour=fac_index_sd*100)) +
scale_colour_viridis(option="B", end=0.8, name="SD for MI") +
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theme_bw() +
ggtitle("Comparing facility index scores (12-indicator scores):

    SARA 2018") +
ylab("Imputed index scores (average of 100 iterations of 10

    imputations each)") +
xlab("Original index scores (missingness hardcoded as 0s)") +
theme(

legend.position="right",
legend.title=element_text(size=11),
axis.title.y=element_text(size=13),
axis.title.x=element_text(size=13),
axis.text.x=element_text(size=11),
axis.text.y=element_text(size=11),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank()))

We can save the above plot in any format using ’ggsave’ function.
ggsave("eth_sara2018_facindex_10mi100it.pdf", width=15,

height=8)

The result is displayed under the following scatter plot diagram. The diagram shows
imputed index scores (average of 100 iterations of 10 imputations each) on the y
axis and original index scores (missingness coded as 0s) on the x-axis.

Figure 3.1: Scatter plot: Imputed index scores vs original index scores from SARA
2018 data
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Chapter 4

Application of Machine Learning
Model

As stated under the introduction section, the overall objective of this analysis is
to quantify the relative contribution of the three drivers (intent to vaccine, com-
munity access and facility readiness) of vaccine coverage in Ethiopia. To achieve
this objective, we compiled and analyzed data from different sources to produce
harmonized geospatial estimates of the three drivers, link estimates of the three
drivers to available household surveys, estimate the predicted relationship between
the probability that a child is vaccinated and levels of the three drivers using ma-
chine learning methods, quantify the relationship between remaining variation and
sociod-emographic factors. The following sections present the overall steps carried
out in fitting machine ML model for quantifying the effects of the three drivers of
vaccine and production of geospatial estimates of the drivers.

We started with loading the already installed packages and installing the missing
packages which are required to run the ML model.

#Load libraries
libs <- c(data.table, sf,tidyverse , pbapply, survey,

mgcv, xgboost, pROC, pdp, SHAPforxgboost , lavaan, foreign,
dplyr)

for(l in libs){
if(!require(l,character.only = TRUE, quietly = TRUE)){

message(sprintf('Did not have the required package <<
    %s >> installed. Downloading now ... ',l))

install.packages(l)
}
library(l, character.only = TRUE, quietly = TRUE)

}
#Clear workspace
rm(list=ls())

We then set our working directory and load the source file using source() function
in R (note that the source a file that we want to source must be in a format that
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R can understand, such as R script. In this case, we source our source file named
func_model.r which is located under 03_code folder under our working directory).

# set working directory
setwd("/Desktop/model_decomp")
# load model code
source("03_code/func_model.r")

We then defined sub-directories under our working directory for locating data files
(needed for the script) and output results/plots as follows:

# location of data files needed for script
work_root <- "02_data"
# location to output results/plots

out_dir <- "04_outputs"

Load Data and shape files

We then load Ethiopia regional (admi1) shapefile and load the pre-processed data
(SARA 2016, SARA 2018, SPA 2014, and imputed CCEI results) from 02_data
folder created above.

#Shape file
shp.admin1 <- read_rds(file.path(work_root,
"admin_1_shapefile_2018.rds"))
#Facility readiness data
df.fac_readiness_full <- fread(file.path(work_root,
"facility_readiness/2023-06 18_sara_facindices_full_index_ETH.csv"))

df.fac_readiness_full <- unique(df.fac_readiness_full,
by = c("svy", "fac_id"))

In the above code, unique() function drops all duplicate rows from the df.fac_readiness_full
data frame, keeping only the first occurrence of each row.

The we read in subsetted index for SARA 2016, SARA 2018, SPA 2014, and CCEI
2019-2020 (which only includes 3 indicators: fridge available, coldchain system,
electricity grid always) using the following code:

df.fac_readiness_subset <- fread(file.path(work_root,
"facility_readiness/2023-06-05_sara_facindices_cceisubset_index_ETH.csv"))
df.fac_readiness_subset <-
unique(df.fac_readiness_subset,
by = c("svy", "fac_id"))

Then we load community access data and intent to vaccinate and child level obser-
vations data from their respective folders under our working directory:

# read in motor/walk travel times to closest
#facility with RI services

df.access <- read_rds(file.path(work_root,
"community_access/access.rds"))
# get additional facility info

df.facilities <- read_rds(file.path(work_root,

48



"community_access/prepped.rds"))
# Intent to vaccinate

df.intent <- fread(file.path(work_root,
"intent/predictions.csv"))
# Child-level observations
df.dhs <- list.files(file.path(work_root,
"child_level_observations"), full.names=T,
pattern="csv") %>% lapply(., fread) %>% rbindlist(.,
fill=T)

4.1 Data Preparation
Process Child Level DHS Data

Drop individuals without latitude or longitude information using filter() function
from dplyr library. In addition, the year_shift calculates the difference between
the survey year and the child’s age in years, rounded down to the nearest integer.

# Drop individuals without lat/long
df.dhs<-filter(df.dhs, !is.na(lat))
# Include individuals >= 12 months of age
df.dhs<-filter(df.dhs, age_month>=12)

# When were kids 0-11 months (based on age/interview month)
df.dhs[, diff := age_month-11]
df.dhs[, year_shift := trunc((int_year * 12 + int_month - diff -1)/12)]

Then the code below does the follwing:

• Sets the year column to the value of the year_shift column.

• Recodes the sex_id column to a binary variable indicating whether the child
is female (1) or male (0).

• Replaces missing values in the pent3 column with the values from the dpt3
column.

• Replaces missing values in the pent1 column with the values from the dpt1
column.
# Set year as shift year
df.dhs[, year := year_shift]
# Recode gender
df.dhs[, female := sex_id - 1]
# Replace pent3 with dpt3
df.dhs[is.na(pent3), pent3 := dpt3]
df.dhs[is.na(pent1), pent1 := dpt1]

Then we fixed admin1 (regional administration column) as follows. The folllwing
code first creates a new column called admin_1_clean in the df.dhs data frame.

• It then uses the str_replace_all() function to replace all occurrences of ”-”
with a single space in the admin_1 column.
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• Uses the str_replace_all() function to replace all misspelled occurrences of
”addis abeba” in the admin_1 column.

• Then it uses the str_replace_all() function to replace all occurrences of ”af-
far” with ”afar” in the admin_1 column.

• Uses the str_replace_all() function to replace all occurrences of ”benishangul
gumuz” in the admin1column.

• Uses the strreplaceall() function to replace all occurrences of ”snnpr” in the
admin_1 column.

• Uses the str_replace_all() function to replace all occurrences with ”oromia”
in the admin_1 column.

• Sorts the unique values in the admin_1_clean column.

• The str_replace_all() function is used to replace all occurrences of a pattern
with another pattern. In this case, the str_replace_all() function is used
to replace all occurrences of certain strings with other strings in the admin1

column.

• The sort() function is then used to sort the unique values in the admin_1_clean
column.

# Fix admin_1
df.dhs[, admin_1 := admin_1 %>%

str_replace_all(., "\\-", " ") %>%
# replace - with a single space
str_replace_all(., "addis abeba|addis

         abada|^addis$|addis adaba", "addis ababa") %>%
str_replace_all(., "affar", "afar") %>%
str_replace_all(., "ben gumz|^benishangul$",
"benishangul gumuz") %>%
str_replace_all(., "\\bsnnp\\b", "snnpr") %>%
str_replace_all(., "oromiya", "oromia")]
sort(unique(df.dhs$admin_1))

We then created has_motor column in the df.dhs data frame. The following code
first sets the value of the has_motor column to 1 if the value of the has_car_truck
column or the has_motorcycle_scooter column is 1. It then sets the value of
the has_motor column to 0 if the value of the has_car_truck column and the
has_motorcycle_scooter column are both 0 or both 7 (response 7 refers to individ-
uals who don’t usually live in the household which is treated as walking time). The
has_car_truck column and the has_motorcycle_scooter column indicate whether
the household has a car or truck and a motorcycle or scooter, respectively. The
has_motor column is a binary variable indicating whether the household has any
motorized transportation.

df.dhs[has_car_truck == 1 | has_motorcycle_scooter ==
1, has_motor := 1]
df.dhs[(has_car_truck == 0 & has_motorcycle_scooter ==
0) | (has_car_truck == 7 & has_motorcycle_scooter ==
7), has_motor := 0]
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The respondent education is re coded to match intent education categories. The
value ”no education”, ”Primary”, ”secondary” and ”higher” in the edu_level col-
umn were renamed to ”No education”, ”Primary”, ”Secondary and above” respec-
tively. Note that the edu_level column contains the educational attainment of the
household head.

# Recode respondent 's partner education
df.dhs[partner_edu_level == "no education",
partner_edu_level := "No education"]
df.dhs[partner_edu_level == "primary",
partner_edu_level := "Primary"]
df.dhs[partner_edu_level %in% c("secondary", "higher"),
partner_edu_level := "Secondary and above"]

Then we check if the value of the partner_edu_level column is missing or is equal
to ”” or ”don’t know”. If the value of the partner_edu_level column is missing or
is equal to ”” or ”don’t know”, then the value of the partner_edu_level column is
set to the value of the edu_level column.

df.dhs[is.na(partner_edu_level) | partner_edu_level
%in% c("", "don't know"), partner_edu_level := edu_level]

The religion column which contains the religious affiliation of the household head is
recoded as follows:

• New column called religion_recode is created first in the df.dhs data frame.

• The value of the religion_recode column is set to ”Christianity: Orthodox”
if the value of the religion column is 1.

• The value of the religion_recode column is set to ”Christianity: Catholic” if
the value of the religion column is 2.

• The value of the religion_recode column is set to ”Christianity: Non-Catholic”
if the value of the religion column is 3.

• The value of the religion_recode column is set to ”Islam” if the value of the
religion column is 4.

• The value of the religion_recode column is set to ”Other/None” if the value
of the religion column is 5, 6, or 96.

• The value of the religion_recode column is set to NA if the value of the
religion column is 9 or 99.
# Recode religion
df.dhs[religion == 1, religion_recode := "Christianity: Orthodox"]
df.dhs[religion == 2, religion_recode := "Christianity: Catholic"]
df.dhs[religion == 3, religion_recode := "Christianity: Non-Catholic"]
df.dhs[religion == 4, religion_recode := "Islam"]
df.dhs[religion %in% c(5, 6, 96), religion_recode := "Other/None"]
df.dhs[religion %in% c(9, 99), religion_recode := NA]

We then drop those missing religion as follows:
df.dhs <- subset(df.dhs, !is.na(religion_recode))
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Regarding occupation, we recoded it as follows: The code you have provided does
the following:

• We first created a new column called employment_bin in the df.dhs data
frame.

• The value of the employment_bin column is to 0 if the value of the occupation
column is ”not working”, ”other”, or ”don’t know”.

• The value of the employment_bin column is to 1 if the value of the occupation
column is not empty and the value of the employment_bin column is missing.

• We then created another column partner_employment_bin in the df.dhs data
frame.

• The value of the partner_employment_bin column is to 0 if the value of the
partner_occupation column is ”not working”, ”other”, or ”don’t know”.

• The value of the partner_employment_bin column is to 1 if the value of the
partner_occupation column is not empty and the value of the partner_employment_bin
column is missing.
df.dhs[occupation %in% c("not working", "other",
"don't know"), employment_bin := 0]
df.dhs[occupation != "" & is.na(employment_bin),
employment_bin := 1]
df.dhs[partner_occupation %in% c("not working",
"other", "don't know"),partner_employment_bin := 0]
df.dhs[partner_occupation != "" &
is.na(partner_employment_bin), partner_employment_bin := 1]

The urban column which indicates whether the household is located in an urban
or rural area, the location_name column contains the name of the administrative
region where the household is located and the child_id column is a unique identifier
for each child in the data set. The following creates a new column called rural in the
df.dhs data frame. It then sets the value of the rural column to 0 if the value of the
urban column is 1 and to 1 if the value of the urban column is 0. It then removes
the location_name column from the df.dhs data frame and creates a new column
called childid in the df.dhs data frame. Then the value of the child_id column is
set to the row number of the df.dhs data frame.

# Urban/rural
df.dhs[, rural := ifelse(urban, 0, 1)]
# Remove location_name
df.dhs <- df.dhs[, -c("location_name"), with = F]
# create child id
df.dhs[, child_id := .I]

The pent1, mcv1, pcv1, and rota1 columns in our data frame indicate whether the
child has received the first dose of the pentavalent, measles, pneumococcal conjugate,
and rotavirus vaccines, respectively. The pent3, mcv2, pcv3, and rotac columns in-
dicate whether the child has received the third dose of the respective vaccines.

The following code:
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• First creates new columns called pent_drop, mcv_drop, pcv_drop, and rota_drop
in the df.dhs data frame.

• Then it sets the value of the pent_drop column to the value of the pent3
column if the value of the pent1 column is 1.

• Sets the value of the mcv_drop column to the value of the mcv2 column if
the value of the mcv1 column is 1.

• Sets the value of the pcv_drop column to the value of the pcv3 column if the
value of the pcv1 column is 1.

• Sets the value of the rota_drop column to the value of the rotac column if the
value of the rota1 column is 1.
df.dhs[pent1 == 1, pent_drop := pent3]
df.dhs[mcv1 == 1, mcv_drop := mcv2]
df.dhs[pcv1 == 1, pcv_drop := pcv3]
df.dhs[rota1 == 1, rota_drop := rotac]
# Drop unnecessary columns
drop <- c(names(df.dhs)[grepl("dose_from|_card", names(df.dhs))])
df.dhs <- df.dhs[, -drop, with = F]

MERGING DRIVER DOMAINS

Merge on intent

The follwing code is used to align intent variables to match DHS:

• The code first sorts the unique values of the admin_1 column in the df.intent
and df.dhs data frames. The output of the sort() function shows that the
unique values of the admin_1 column in the two data frames are the same,
except the fact that the admin_1 column in the df.intent data frame has
”hareri” and ”beneshangul gumu” while the admin_1 column in the df.dhs
data frame has ”harari” and ”benishangul-gumuz”

• We changed the values of the admin_1 column in the df.intent data frame to
match the values in the df.dhs data frame.

• The tolower() function converts all the characters in the admin_1 column
to lowercase. The str_replace_all() function replaces all occurrences of the
string ”hareri” with the string ”harari” and all occurrences of the string ”be-
neshangul gumu” with the string ”benishangul gumuz”.

• Finally, the code intersects the unique values of the admin_1 column in the
df.dhs and df.intent data frames. The output of the intersect() function shows
that the common values of the admin_1 column in the two data frames are
the administrative regions of Ethiopia.
sort(unique(df.intent$admin_1))
sort(unique(df.dhs$admin_1))
df.intent[, admin_1 := admin_1 %>%

tolower %>%
str_replace_all(., "hareri", "harari") %>%
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str_replace_all(., "beneshangul gumu",
"benishangul gumuz")]

intersect(unique(df.dhs$admin_1), unique(df.intent$admin_1))

The following code first changes the names of the education_combined and religion_combined
columns in the df.intent data frame to edu_level and religion_recode, respectively.
This is done in order to match the column names.

# match column names
setnames(df.intent, old = c("education_combined",
"religion_combined"), new = c("edu_level",
"religion_recode"))

We then merged the df.dhs and df.intent data frames on the admin_1, edu_level,
and religion_recode columns as follows (the all.x=T argument tells R to keep all
rows from the df.dhs data frame, even if there are no matching rows in the df.intent
data frame).

# merge on intent model variables
df.dhs <- merge(df.dhs, df.intent, by = c("admin_1",
"edu_level", "religion_recode"), all.x=T)

In the above code, the merge() function is used to combine the df.dhs data frame,
which contains information about children in Ethiopia, and the df.intent data frame,
which contains information about the vaccination intentions of mothers in Ethiopia.
The by argument to the merge() function specifies that the df.dhs and df.intent data
frames are merged on the admin_1, edu_level, and religion_recode columns.

Merge on community access:
# ensure rank is numeric
df.access[, motor_rank := as.numeric(motor_rank)]
df.access[, walk_rank := as.numeric(walk_rank)]

The following code then:

• First calculates the minimum travel time to the closest facility with RI services
for motor and walking travel.

• It then subsets the data to the facilities with the shortest travel time for each
mode of transportation.

• Merges the two data subsets to create a single data frame that contains the
information about the closest facility with RI services for both motor and
walking travel.

• Merges the df.access_mins data frame with the df.dhs data frame on the
cluster_long and cluster_lat columns.

• Assigns the time to the closest facility with RI services based on the house-
hold’s vehicle ownership status.
identify closest facility with RI services
df.access[ri_services == 1, motor_min :=
min(motor_rank), by = c("cluster_lat", "cluster_long")]
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df.access[ri_services == 1, walk_min :=
min(walk_rank), by = c("cluster_lat", "cluster_long")]
## subset to shortest walking or motor travel time
df.access_motor <- df.access[motor_rank == motor_min]
setnames(df.access_motor, c("fac_long", "fac_lat",
"group_id", "source"), paste0("motor_", c("fac_long",
"fac_lat", "group_id", "source")))
df.access_motor <- df.access_motor[, c("cluster_long",
"cluster_lat", paste0("motor_", c("fac_long",
"fac_lat", "group_id", "source")), "time_motor")]
df.access_walk <- df.access[walk_rank == walk_min]
setnames(df.access_walk, c("fac_long", "fac_lat",
"group_id", "source"), paste0("walk_", c("fac_long",
"fac_lat", "group_id", "source")))
df.access_walk <- df.access_walk[, c("cluster_long",
"cluster_lat", paste0("walk_", c("fac_long",
"fac_lat", "group_id", "source")), "time_walk")]
df.access_mins <- merge(df.access_motor,
df.access_walk, by = c("cluster_long", "cluster_lat"), all = T)
# merge on DHS cluster GPS
df <- merge(df.dhs, df.access_mins, by.x = c("lat",
"long"), by.y = c("cluster_lat", "cluster_long"), all.x = T)
# assign community access based on vehicle ownership
df[has_motor == 1, c("time_vehicle_dependent",
"fac_lat", "fac_long", "source", "group_id") := .
(time_motor, motor_fac_lat, motor_fac_long,
motor_source, motor_group_id)]
df[has_motor == 0, c("time_vehicle_dependent",
"fac_lat", "fac_long", "source", "group_id") := .
(time_walk, walk_fac_lat, walk_fac_long, walk_source,
walk_group_id)]

In the above code, the ri_services column in the df.access data frame indicates
whether the facility provides RI services. The motor_rank and walk_rank columns
in the df.access data frame indicate the rank of the facility based on the travel time
to the facility. The min() function is used to find the minimum value in a column.
The by argument to the min() function specifies that the minimum value is calcu-
lated over the cluster_lat and cluster_long columns.

The merge() function is used to combine the df.access_motor and df.access_walk
data frames on the cluster_long and cluster_lat columns. The all.x=T argument
to the merge() function is used to keep all rows from the df.access_motor data
frame. The has_motor column in the df.dhs data frame indicates whether the
household owns a motor vehicle. The assign() function is used to assign the time
to the closest facility with RI services based on the household’s vehicle ownership
status.

Merge on facility readiness

In order to merge the data on facility readiness, we followed the following steps using
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the below code:

• We started with renaming the fac_index column in the df.fac_readiness_full
data frame to fac_index_fullequal and the fac_index column in the df.fac_readiness_subset
data frame to fac_index_subsetequal using setnames() function

• We then allign the survey names in the df.fac_readiness_subset data frame
by changing the name of the svy column to Cold Chain Assessment 2020 if
the value of the svy column is equal to ”CCEI”.

• Then merge the df.fac_readiness_full and df.fac_readiness_subset data
frames on the fac_id and svy columns.

• New column called fac_id_orig is then created in the merged data frame
that contains the original value of the fac_id column.

• The fac_id column is removed from the merged data frame.

# rename columns
setnames(df.fac_readiness_full, "fac_index",
"fac_index_full_equal", skip_absent = T)
setnames(df.fac_readiness_subset, "fac_index",
"fac_index_subset_equal", skip_absent = T)
# align survey names
df.fac_readiness_subset[svy == "CCEI", svy := "Cold

    Chain Assessment 2020"]
# combine different index constructs
df.readiness <- merge(df.fac_readiness_full[,
c("fac_id", "svy", "ri_services",
names(df.fac_readiness_full)[grepl("vxavail",
names(df.fac_readiness_full))],
"fac_index_full_equal"), with = F],
df.fac_readiness_subset[, c("fac_id", "svy",
"fac_index_subset_equal"), with = F],

by = c("fac_id", "svy"))
df.readiness <- df.readiness[, fac_id_orig := fac_id][,
-c("fac_id"), with = F]

We then merge facility readiness scores onto grouped facility list using the below
code:

df.facs_readiness <- merge(df.facilities[,
c("fac_id_orig", names(df.facilities)
[names(df.facilities) %ni% names(df.readiness)]),

with = F], df.readiness , by.x = c("fac_id_orig",
"source"), by.y = c("fac_id_orig", "svy"), all.x = T)

The above code:

• Merges the df.facilities and df.readiness data frames on the fac_id_orig and
svy columns.

• The all.x = T argument to the merge() function is used to keep all rows
from the df.facilities data frame, even if there are no matching rows in the
df.readiness data frame.
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• The names(df.facilities)[names(df.facilities)%ni%names(df.readiness)] ex-
pression returns a vector of the column names in the df.facilities data frame
that are not in the df.readiness data frame.

We then drop facilities that do not have a corresponding index score using the code
below:

df.facs_readiness <- subset(df.facs_readiness ,
!is.na(fac_index_full_equal))

Then the readiness scores were merged onto combined DHS, intent, and access table
using the following code:

df <- merge(df[, -c("source"), with = F],
df.facs_readiness[, c("group_id", "source",
names(df.facs_readiness)[names(df.facs_readiness)
%ni% names(df)]), with = F],

by.x = c("fac_lat", "fac_long", "group_id"),
by.y = c("group_lat", "group_long",
"group_id"),
all = T)

Final Cleanup

# drop those with no vehicle info
df %>% filter(!is.na(time_vehicle_dependent))
# remove facilities that did not map onto a child
df %>% filter(!is.na(child_id))
# remove children that mapped onto facilities without scores
df %>% filter(!is.na(fac_index_full_equal))
# check for children that fall outside of Ethiopia shapefile
df.outside_eth <- df[is.na(fac_long)]
# keep children whose birth year is within +/- 3 years
#of facility readiness score year
df %>% filter(!is.na(abs(year_data - year) <= 3))

When individuals map onto facilities with multiple readiness scores, the average
average score is taken using the below code:

df[, c("readiness_full", "readiness_subset") := .
(mean(fac_index_full_equal, na.rm = T),
mean(fac_index_subset_equal, na.rm = T)), by =
"child_id"]
df <- unique(df, by = "child_id")

Reshape the data frame in to long format on vaccine, the following code is used
which:

• Creates a vector called vacc.cols that contains the names of the columns in
the df data frame that represent vaccination information.

• Creates a vector called id.cols that contains the names of the columns in the
df data frame that are not vaccination information.
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• The setdiff() function is used to find the difference between the names of all
the columns in the df data frame and the names of the columns in the vacc.cols
vector.
vacc.cols <- c("pent1", "pent2", "pent3", "pent_drop",

"mcv1", "mcv2", "mcv_drop",
"pcv1", "pcv2", "pcv3", "pcv_drop",
"rota1", "rota2", "rotac", "rota_drop")
id.cols <- setdiff(names(df), vacc.cols)

Using the above information,the following code:

• Creates a long format data frame called df.dhs.l from the df data frame.

• The melt() function is used to melt the data frame. The id.cols vector is used
to specify the columns that should be kept in the original order.

• The variable.name argument is used to specify the name of the column that
will contain the names of the vaccine doses. The value.name argument is used
to specify the name of the column that will contain the vaccination coverage
data.

• The code then removes the numeric prefixes from the vaccine_dose column
and assigns the resulting string to the vaccine column.
df.dhs.l <- df[, c(id.cols, vacc.cols), with=F] %>%

data.table::melt(id.vars=id.cols,
variable.name="vaccine_dose", value.name="coverage")
df.dhs.l[, vaccine := gsub("_drop", "", gsub("[0-9]",
"", vaccine_dose))]

Then the following code subsets the df.dhs.l data frame to rows where the vaccine_dose
column is equal to ”pent3” and the coverage column is not missing.

df <- df.dhs.l[vaccine_dose == "pent3" &
!is.na(coverage)]

4.2 Fitting Machine Learning Model
We first create a vector called vaccs that contains the names of two vaccines: pent3
and pent1.

vaccs <- c("pent3", "pent1")

Then we transform and set access and readiness as follows

• First we create a new column called access that ranges from 0 to 1, where 0 in-
dicates the worst access and 1 indicates the best access. The time_vehicle_dependent
column indicates the time to the closest facility with RI services for children
who do not have a motor vehicle. The log() function is used to transform the
time_vehicle_dependent column to a logarithmic scale. The scales::rescale()
function is then used to transform the logarithmic scale to a scale from 0 to 1.

• Then we created a new column called readiness that indicates the overall
readiness of the facility to provide RI services. The readiness_full column
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is a composite index that measures the readiness of the facility to provide RI
services.

• The intent column is also created which indicates the predicted vaccination
intention of the mother.

# Transform and set access/readiness
df[, access := 1 -
scales::rescale(log(time_vehicle_dependent+0.001), c(0, 1))]
df[, readiness := readiness_full]
df[, intent := pred_intent_all]

Note that the access and readiness columns are continuous variables that can be
used to measure the impact of access and readiness on vaccination coverage.

4.2.1 Visualization of the domain average by region
To visualize the average of the three domains (rediness, intent and access) by region,
the following variables were first created using the code below:

• We first created a new data frame called plotdt that contains the mean values
of the access, intent, and readiness columns for each administrative region.
The str_replace_all() function is used to replace ”benishangul gumuz” with
”beneshangul gumu”, ”harari” with ”hareri”, ”S N N P” with ”SNNPR”

• The str_to_title() function is used to convert the administrative region names
to title case.

• We then merged the plot_dt data frame with the shp.admin1 data frame
(shape file) on the ADM1_NAME column. The by.x argument specifies
that the ADM1_NAME column in the plot_dt data frame should be merged
with the ADM1_NAME column in the shp.admin1 data frame. The by.y
argument specifies that the admin1 column in the plot_dt data frame should
be merged with the ADM1_NAME column in the shp.admin1 data frame.
The all.x = T argument is used to keep all rows from the plot_dt data frame.

plot_dt <- df[, .(access =mean(time_vehicle_dependent),
intent = mean(intent), readiness = mean(readiness)), .(admin1)]
plot_dt[, admin1 := admin1 %>%

str_replace_all(., "benishangul gumuz",
"beneshangul gumu") %>%
str_replace_all(., "harari", "hareri") %>%
str_to_title() %>%
str_replace_all(., "S N N P", "SNNPR")]
plot_dt <- merge(shp.admin1, plot_dt, by.x =
"ADM1_NAME", by.y = "admin1", all.x = T)

Then we created a choropleth map of Ethiopia, where the fill color of each admin-
istrative region represents the mean vaccination intention for that region by using
the following code. The geom_sf() function is used to create a choropleth map, the
aes() function specifies that the fill color of each polygon should be determined by
the value of the intent column. The scale_fill_gradientn() function specifies the
color scheme for the choropleth map. The labs() function specifies the title and the

59



legend for the plot. The theme_void() function removes the background and grid
lines from the plot and the theme() function specifies the alignment of the plot title.

p1 <- ggplot(plot_dt)+ geom_sf(aes(fill = intent*100),
color = "black", show.legend = TRUE)+
scale_fill_gradientn(colors = c("#005159", "#4cb6c1",
"#99d5db", "white") %>% rev())+
labs(title = "Intent", fill = "%")+ theme_void()+
theme(plot.title = element_text(hjust = 0.5))

In this same manner, the following code creates a choropleth map of Ethiopia, where
the fill color of each administrative region represents the mean facility readiness score
for that region. The darker the color, the higher the mean facility readiness score.
The code is similar to the code for the p1 plot above, with the only difference being
that the fill aesthetic is now set to the readiness column.

p2 <- ggplot(plot_dt)+ geom_sf(aes(fill =
readiness*100), color = "black", show.legend = TRUE)+
scale_fill_gradientn(colors = c("#005159", "#4cb6c1",
"#99d5db", "white") %>% rev())+
labs(title = "Facility Readiness", fill = "Score")+
theme_void()+ theme(plot.title = element_text(hjust = 0.5))

In the same manner, the below code creates a choropleth map of Ethiopia, where
the fill color of each administrative region represents the mean time to the closest
facility with RI services. The darker the color, the longer the mean time to the
closest facility. The code is similar to the code for the p1 and p2 plots, with the
only difference being that the fill aesthetic is now set to the access column.

p3 <- ggplot(plot_dt)+ geom_sf(aes(fill = access),
color = "black", show.legend = TRUE)+ scale_fill_gradientn(colors = c("#005159", "#4cb6c1",
"#99d5db", "white") %>% rev())+ labs(title = "Access",
fill = "Mins")+ theme_void()+
theme(plot.title = element_text(hjust = 0.5))

Then the following code is used to combine the three plots (p1, p2, p3) into a single
grid. The nrow=1 argument specifies that the plots should be arranged in a single
row.

cowplot::plot_grid(p1, p2, p3, nrow = 1)

The visualization result of the above code is displayed below:
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Figure 4.1: Distribution of the average intent, readiness and access scores by region

4.2.2 Running the Machine Learning Model
We then fit XGBoost model. In order to do that, we started with setting the order
of the x-axis names to intent, readiness, and access and the y-axis to coverage as
follows:

## Organize x names
cols.base <- c("access", "readiness", "intent")
y <- "coverage"

We then set the seed for the random number generator to 1 to ensure that the results
of the random sampling are reproducible. We then use the createDataPartition()
function to create a training set and a test set from the caret package in R. The
createDataPartition() function randomly partitions the data into two sets, such
that the training set contains 80% of the data and the test set contains 20% of the
data. The y argument specifies the target variable. The indexes object contains the
row indices for the training set and the test set. The training set will be used to
train the ML model, and the test set will be used to evaluate the performance of
the model. The code is presented below:

## Run XGB
set.seed(1)
#install.packages("caret")
library(caret)
indexes <- createDataPartition(df[[y]], times = 1,p =
0.8,list = FALSE)

We then fit XGBoost model for with access, readiness, intent
# Fit with access, readiness , intent
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library(xgboost)
train1 <- xgb.DMatrix(data=df[indexes, c(cols.base),
with=F] %>% as.matrix, label= df[indexes][[y]])
test1 <- xgb.DMatrix(data=df[-indexes, c(cols.base),
with=F] %>% as.matrix, label= df[-indexes][[y]])
library(data.table)
fit1 <- fit.xgb(train1, n=250, nfolds=5,
objective="binary:logistic", eval_metric="auc",
minimize_eval=0)

The above code first loads the xgboost package which is an implementation of the
XGBoost algorithm. It then converts the training data into an xgb.DMatrix object.
The xgb.DMatrix object is a special data structure that is used by the XGBoost
algorithm. Then it converts the test data into an xgb.DMatrix object abd fits an
XGBoost model to the training data. The fit.xgb() function is a custom function
that created to fit an XGBoost model. The n=250 argument specifies the num-
ber of trees in the model. The nfolds=5 argument specifies the number of folds
for cross-validation. The objective argument specifies the loss function to be used
while the eval_metric argument specifies the evaluation metric to be used. The
minimize_eval argument specifies whether to minimize or maximize the evaluation
metric. The fit1 object contains the fitted XGBoost model which can then be used
to make predictions on new data. Runing the code may take few minutes depending
on the performance of our machine.

The following code saves the fitted XGBoost model to a file called
fit_dtp3_base_intent_all_3years_readiness.rds and the data used to train the
XGBoost model to a file called
fit_dtp3_base_intent_all_3years_readiness_data.csv in the out_dir directory.
The export() function from the rio package is used. The code is as follows:

export(fit1, file.path(out_dir,
"/fit_dtp3_base_intent_all_3years_readiness.rds"))
export(df, file.path(out_dir,
"/fit_dtp3_base_intent_all_3years_readiness_data.csv"))

Getting Shapley Values

The first stage Shapley values are obtained as follows:

• We first calculate the SHAP values for the XGBoost model using the shap.prep()
function from the SHAP package. The xgb_model argument specifies the fit-
ted XGBoost model. The X_train argument specifies the training data.

• We then create a summary plot of the SHAP values using the shap.plot.sum-
mary() function from the SHAP package.

• A dependence plot of the SHAP values for the access variable is then cre-
ated using the shap.plot.dependence() function from the SHAP package. The
color_feature argument specifies the variable to use for coloring the points.
## First stage SHAP Values
shap_long <- shap.prep(xgb_model = fit1$best, X_train =
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df[, c(cols.base), with=F] %>% as.matrix)
shap.plot.summary(shap_long)
shap.plot.dependence(data_long = shap_long, x =
'access', y = 'access', color_feature = 'access')

The above step produces the following plot:

Figure 4.2: Shapley Values of Access Variable

• Using the below code, we obtain the following result for readiness variable:
shap.plot.dependence(data_long = shap_long, x =

'readiness', y = 'readiness', color_feature = 'readiness')

Figure 4.3: Shapley Values of Readiness Variable

• Again repeating the above steps for intent variable and using the code below,
we obtain the following plot
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shap.plot.dependence(data_long = shap_long, x =
'intent', y = 'intent', color_feature = 'intent')

Figure 4.4: Shapley Values of Intent Variable

The SHAP values are a measure of the importance of each feature ML model. The
dependence plots show the SHAP values for each feature as a function of the value of
the feature. The plots show that the access variable has the greatest impact on the
predicted vaccination coverage. The readiness variable also has a significant impact,
while intent variable has a relatively small impact on the predicted vaccination
coverage.

4.2.3 Demographic Effects
In order to quantify the effects of demographic variables on the likelihood of vac-
cination, the study applied logistic regression model. We started with creating a
vector called predictors that contains the names of the variables that will be used
as predictors and converts the year variable to an integer using the below code:

## data diagnostics
predictors <- c("sex_id", "edu_level", "wealth_index_dhs",
"religion_recode", "admin_1", "year")
df[, year := as.integer(year)]

Then using the predict() function from the xgboost package to, we predict the
vaccination coverage for the test data using the code below:

pred1 <- predict(fit1$best, newdata=df[, c(cols.base), with=F]
%>% as.matrix)
df[, pred1 := pred1]

In the above code, the fit1$best argument specifies the fitted XGBoost model from
the previous section while the newdata argument specifies the test data. The code
stores the predicted vaccination coverage in the pred1 object. We then add a new
column called pred1 to the df data frame. The pred1 column contains the predicted
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vaccination coverage for each observation.

We then fit a generalized linear mixed model (GLMM) to the data using the follwing
code:

fit1.glm.stage2 <- glmer(formula = dpt3 ~ offset(pred1) +
as.factor(sex_id) + edu_level + as.factor(wealth_index_dhs) +
(1|year_shift) + (1|admin_1), family = "binomial", data = df)

The glmer() function from the lme4 package is used to fit a generalized linear
mixed model (GLMM). The formula argument specifies the model formula. The
offset(pred1) term specifies that the predicted vaccination coverage from the XG-
Boost model is used as an offset in the GLMM where as the as.factor() function
is used to convert the categorical variables to factors. The (1|year_shift) and
(1|admin_1) terms specify that the year and administrative region are random ef-
fects in the model.

We then check for multicollinearity of the above using:

library(performance)
check_collinearity(fit1.glm.stage2)

The above code resulted in the follwing output:

Term VIF VIF 95% CI Increased SE Tolerance
as.factor(sex_id) 1.00 [1.00, Inf] 1.00 1.00
edu_level 1.13 [1.10, 1.16] 1.06 0.89

as.factor(wealth_index_dhs) 1.13 [1.10, 1.16] 1.06 0.89

We then check for coefficients that make sense using their respective odds ration
(>10 is probably too large). The following code is used to check for coefficients. We
used the plot_model() function from the sjPlot package to plot the results of the
fitted GLMM model.

sjPlot::plot_model(fit1.glm.stage2)

The following result is obtained after running the code:
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Figure 4.5: Odds Ratio for Coefficients

Visualization of Odds Ratios

We create plot model object for stage 2 model using the below code:
p.m2 <- plot_model(fit1.glm.stage2)
p.m2.admin1 <- plot_model(fit1.glm.stage2, type="re")[[1]]
p.m2.year <- plot_model(fit1.glm.stage2, type="re")[[2]]

Group headings and reference values were then added to our stage to plot model:
p.m2$data <- p.m2$data %>% as.data.table
p.m2.year$data <- p.m2.year$data %>% as.data.table

We then add terms to our stage two
p.stage2 <- rbind(data.table(term="SEX (CHILD)",
estimate=NA, facet="(Intercept)"),
data.table(term="Male (Ref)", estimate=1, std.error=0.1,
conf.low=1, conf.high=1, xpos=12, group="pos", facet="

    (Intercept)"), p.m2$data[term=="as.factor(sex_id)2"] %>%
mutate(term="Female"),
data.table(term="MATERNAL EDUCATION", estimate=NA, facet="

    (Intercept)"),
data.table(term="Less than primary (Ref)", estimate=1,
std.error=0.1, conf.low=1, conf.high=1, xpos=12,

66



group="pos", facet="(Intercept)"),
p.m2$data[grepl("edu_level", term)] %>%
mutate(term=c("Primary", "Secondary+")),
data.table(term="DHS WEALTH INDEX", estimate=NA),
data.table(term="1st Quintile (Ref)", estimate=1,
std.error=0.1, conf.low=1, conf.high=1, xpos=12,
group="pos"),
p.m2$data[grepl("wealth", term)] %>% mutate(term=c("2nd

    Quintile", "3rd Quintile", "4th Quintile", "5thQuintile")),
data.table(term="REGION", estimate=NA, facet="

    (Intercept)"), p.m2.year$data, data.table(term="BIRTH
    YEAR", estimate=NA, facet="(Intercept)"), p.m2.admin1$data

%>% mutate(term=str_to_title(term)), fill=T)

Then the following code will factor the term variable in the p.stage2 data frame,
and then reverse the order of the levels. This means that the highest level will be
at the bottom, and the lowest level will be at the top.

p.stage2$term <- p.stage2$term %>% factor(., levels=.,
labels=., ordered=T) %>% fct_rev

The odds ration is then visualized using the ggplot function as follows:
p.effects <- ggplot(data = p.stage2, aes(y = term, x =
estimate, color = group, fill = group)) +
geom_pointrange(aes(xmin = conf.low, xmax = conf.high)) +
geom_vline(aes(xintercept = 1), linetype = "dashed") +
scale_color_brewer(palette = "Set1") +
scale_x_log10(breaks = c(0.5, 1, 2, 3, 4), labels =
c("0.5", "1", "2", "3", "4")) + scale_y_discrete(labels=c("SEX(CHILD)"=
expression(bold("SEX (CHILD)")), "Male (Ref)", "Female",
"MATERNAL EDUCATION"=expression(bold("MATERNAL EDUCATION")),
"Primary (Ref)", "Secondary+", "DHS WEALTH

    INDEX"=expression(bold("DHS WEALTH INDEX")),
"1st Quintile (Ref)", "2nd Quintile", "3rd Quintile",
"4th Quintile", "5th Quintile", "REGION"=expression(bold("REGION")),
p.m2.year$data %>% dplyr::select(term), "BIRTH

    YEAR"=expression(bold("BIRTH YEAR")),
p.m2.admin1$data %>% mutate(term=str_to_title(term)) %>%
dplyr::select(term))) + labs(title="", x="Odds of

    Coverage") + coord_cartesian(xlim = c(-1, 5)) +
theme_sjplot2() + theme(legend.position = "none",
axis.title.y = element_blank(), axis.line.x =
element_line(color = NA), axis.line.y = element_line(color = NA))

Running the above code resulted in the following result showing the odds ratio of
stage2 variables:

Pie Chart for

The following section presents the steps carried out to obtain pie chart for explaining
proportion of variance of likelihood of vaccination explained by each feature (intent,
access, readiness, child sex, maternal education, year and region). We first fit logistic
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Figure 4.6: The distribution of odds of vaccination by demographic predictors

regression model taking pred1 as the predictor variable and dpt3 as the response
variable (0 in the formula is used for excluding an intercept term in the model). We
then calculate the pseudo R-squared value for the model to see how well the model
fits the data.

m1 <- glm(dpt3 ~ 0 + pred1, data=df, family=binomial)
pr1 <- 1 - m1$deviance/m1$null.deviance

The following code then creates a vector of covariate (pred1, sex_id, edu_level,
year, and admin_1). It then creates a new variable called pred2 which is the mean
of the dpt3 variable, minus 1, within each group of the covariates. This line fits
the logistic regression model with pred2 as the predictor variable and dpt3 as the
response variable. Finally the pseudo R-squared value for the model are calculated
by subtracting the null deviance from the deviance and then dividing by the null
deviance

## Stage 2 - Perfect prediction Pseudo R2
covs <- c("pred1", "sex_id", "edu_level", "year", "admin_1")
df[, pred2 := mean(as.integer(dpt3)-1, na.rm=T), by=covs]

68



m2 <- glm(dpt3 ~ 0 + pred2, data=df, family=binomial)
pr2 <- 1 - m2$deviance/m1$null.deviance

Then importance of each feature are calculated using the following code:

shap1 <- shap_long
shap1.l <- shap1
shap1.l <- shap1.l[variable%in%fit1$best$feature_names]
hap1.l[, group := variable]
shap1.l[, global := mean(abs(value)), by=group]
shap1.l[, var := var(value), by=group]
shap1.agg <- shap1.l[, .(group, global, var)] %>% unique
shap1.agg[, p := var/sum(var)]

In the above code:

• The importance of each feature are calculated using Shapley values. The
shap_long object contains the Shapley values for each feature, and the fit1$best$fea-
ture_names vector contains the names of the best features.

• The shap1[variable%in%fit1$best$feature_names], subsets the shap_long ob-
ject to only include the rows where the variable column is in the fit1$best$fea-
ture_names vector.

• shap1.l[, group := variable], creates a new column called group that contains
the names of the features.

• shap1.l[, global := mean(abs(value)), by=group], calculates the mean abso-
lute value of the Shapley values for each feature as a measure of the overall
importance of the feature.

• shap1.l[, var := var(value), by=group], calculates the variance of the Shapley
values for each feature (a measure of how spread out the Shapley values are
for each feature)

• shap1.agg <- shap1.l[, .(group, global, var)] %>% unique, creates a new data
frame called shap1.agg that contains the group, global, and var columns. The
unique() function removes any duplicate rows from the data frame.

• shap1.agg[, p := var/sum(var)], calculates the proportion of variance explained
by each feature. This is a measure of the relative importance of each feature.

• The output of the code is a data frame that contains the group column (names
of the features), global column ( mean absolute value of the Shapley values
for each feature), var column (variance of the Shapley values for each feature),
and p column ( proportion of variance explained by each feature).

shap1 <- shap_long
shap1.l <- shap1
shap1.l <- shap1.l[variable%in%fit1$best$feature_names]
shap1.l[, group := variable]
shap1.l[, global := mean(abs(value)), by=group]
shap1.l[, var := var(value), by=group]
shap1.agg <- shap1.l[, .(group, global, var)] %>% unique
shap1.agg[, p := var/sum(var)]
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The product of the proportion of variance explained by each feature and the pseudo
R-squared value for the model is calculated and saved as a new column called p_r2
under shap1.agg data frame as follows:

## As a proportion of pseudo-R2
shap1.agg[, p_r2 := p*pr1]

Then the above calculated values are appended on shap1.agg data frame and unex-
plained variations are also calculated using the code below:

# Append on stage 2 and calculate unexplained
shap1.agg <- shap1.agg %>% rbind(
data.table(group="Stage 2", p_r2 =pr2-pr1),
data.table(group="Unexplained", p_r2 = 1 - pr2), fill=T)
shap1.agg[, disp := c("Intent to Vaccinate", "Community

    Access", "Facility Readiness", "Additional Factors
    (Child's Sex, \nMaternal Edu, Wealth, Region, Year)",

"Unexplained")]
shap1.agg[, disp := factor(disp, levels=c("Intent to

    Vaccinate", "Community Access", "Facility Readiness",
"Additional Factors (Child's Sex, \nMaternal Edu, Wealth,

    Region, Year)", "Unexplained"), labels=c("Intent to
    Vaccinate", "Community Access", "Facility Readiness",

"Additional Factors (Child's Sex, \nMaternal Edu, Wealth,
    Region, Year)", "Unexplained"), ordered=T)]

shap1.agg <- shap1.agg[order(disp)]

Then the cumulative probability (pcum) is calculated and labels (labs) are added
to the above data frame shap1_agg as follows:

shap1.agg[, pcum := 1 - (cumsum(p_r2) - 0.5*p_r2)]
shap1.agg[, labs := paste0(round(shap1.agg$p_r2*100, 1), "%")]

Then the pie chart showing the variations on likelihood of vaccination explained by
each of the predictors is obtained using the below code:

## Pie chart
shap1.agg %>% ggplot(aes(y=p_r2,x="", fill=disp))
+ geom_bar(stat="identity", position="stack") +
coord_polar("y", start=0, clip="off", direction=-1) +
scale_fill_manual(values=c( "#00416b", "#0098a7",
"#ff6400","#ffa266", "#0a6bd1", "grey90")) +

scale_y_continuous(breaks=shap1.agg$pcum, labels=
shap1.agg$labs)+ theme_minimal()+ labs(fill="") +
theme( axis.title.x = element_blank(), axis.title.y =
element_blank(), panel.border = element_blank(),
panel.grid=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(size=14),
axis.text.y=element_text(size=20), legend.position="bottom")
+ guides(fill=guide_legend(nrow=2, byrow=TRUE))
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The following pie chart is obtained from the above code:

Figure 4.7: Explained variations in the likelihood of vaccination by different predic-
tors
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